The speed of light : 299 792 458 m / s
Answer: is <em><u>Organelles present in single-celled organisms act in a manner similar to organ systems</u></em>
<em><u /></em>
Explanation:
Multicellular organisms organ system play a critical role for the smooth functioning of whole body. Millions of cells combined to make an organism. The role of organ system in whole body is to provides oxygen and nutrients to the cells and eliminates the toxic material such as carbon dioxide. Organ systems like, respiratory system, digestion system, and cardiovascular play an important role in the human body to perform various functions for its survival.
Unlike multicellular organisms the unicellular only consists of single cell e.g. prokaryotic organisms and eukaryotic organisms namely, Amoeba, Euglena, salmonella, Fungi etc. Single celled organisms are able to carry out all processes mandatory for the sustenance of life with the help of single cell only e.g. respiration and digestion.They can survive with the help of single cell. Unlike multicellular organisms unicellular do not require multiple number of cell for its survival.
Law of conservation of momentum states that when two objects collide with each other , the sum of their linear momentum always remains same or we can say conserved and is not effected by any action, reaction only in case is no external unbalanced force is applied on the bodies.
Let,
m
A
= Mass of ball A
m
B
= Mass of ball B
u
A
= initial velocity of ball A
u
B
= initial velocity of ball B
v
A
= Velocity after the collision of ball A
v
B
= Velocity after the collision of ball B
F
ab
= Force exerted by A on B
F
ba
= Force exerted by B on A
Now,
Change in the momentum of A= momentum of A after the collision - the momentum of A before the collision
= m
A
v
A
−m
A
u
A
Rate of change of momentum A= Change in momentum of A/ time taken
=
t
m
A
v
A
−m
A
u
A
Force exerted by B on A (F
ba
);
F
ba
=
t
m
A
v
A
−m
A
u
A
........ [i]
In the same way,
Rate of change of momentum of B=
t
m
b
v
B
−m
B
u
B
Force exerted by A on B (F
ab
)=
F
ab
=
t
m
B
v
B
−m
B
u
B
.......... [ii]
Newton's third law of motion states that every action has an equal and opposite reaction, then,
F
a
b=−F
b
a [ ' -- ' sign is used to indicate that 1 object is moving in opposite direction after collision]
Using [i] and [ii] , we have
t
m
B
v
B
−m
B
u
B
=−
t
m
A
v
A
−m
A
u
A
m
B
v
B
−m
B
u
B
=−m
A
v
A
+m
A
u
A
Finally we get,
m
B
v
B
+m
A
v
A
=m
B
u
B
+m
A
u
A
This is the derivation of conservation of linear momentum.
Explanation:
Spaceship A moves at 0.800 in the positive – direction, while spaceship B moves in the opposite direction at 0.750 (both speeds are measured relative to Earth). What is the velocity {A,B} of spaceship A relative to spaceship B
The same 38 degree angle just in the opposite direction