The vertex form is y=a(x-h)²+k
the vertex is (h,k)
so
y=-1(x-2)²+3
compare to
y=a(x-h)²+k
2=h and 3=k
the vertex is (2,3)
4th option
Given:
O is the midpoint of line MN
OM = OW
To prove: OW = ON
<u>Statement</u> <u>Reason</u>
1> OM = OW -------------------------> Given
2> OM = ON ---------------------------> O is the midpoint of line MN
i.e Point O bisects line MN
3> OM = OW --------------------------> From statement <1>
4> ON = OW -------------------------> OM = ON (Statement <2>)
OW = ON
<u>proved!!</u>
1.)18/27 2.)15:10 3.)6.30 4.)160 5.)400 6.)426 7.)10 cups 8.)102.4 9.)0 1
Answer: B) y=6/11.
To find the horizontal asymptote(s) you must find the limit as x approaches infinity and the limit as x approaches -infinity.
Using L’Hôpital’s rule:
lim x-> infinity (f(x))=6/11.
lim x-> -infinity (f(x))=6/11.
Answer:
Step-by-step explanation:
angle A = 40
angle B = 60
angle C = we don't know.
A + B + C = 180
C = 180 - A - B
C = 180 - 40 - 60
C = 80
40 + 60 + 80 = 180
180 = 180...It checks!