The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
- The first law of thermodynamics is a similar version of the law of conservation of energy where the energy can neither be created nor be destroyed, it can be transformed from one form to the other.
- It also defines that the work is done and heat flowing into the system is due to the change in internal energy. The sum of all energy including kinetic and potential energy except the displaced energy to the surrounding is known as internal energy.
- ΔU represents the change in internal energy of the system, Q represents the net heat transferred into the system, and W represents the net work done by the system. So +ve Q adds energy to the system and =ve W takes energy from the system. Thus ΔU=Q−W.
Answer:
A
Explanation:
With the given choices, A would be correct for this question. But, both liquids and gases have particles that are far apart so that they can fill their containers.
This problem is providing the chemical reaction whereby barium nitride reacts with water to produce barium hydroxide and ammonia, so the number of moles of barium nitride are required in order to produce 8.3 moles of ammonia. It asks for us to evaluate the student's setup, so we conclude the answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3", according to:
<h3>Mole ratios:</h3>
In chemistry, stoichiometric calculations are used to figure out the moles or mass of a substance, given information about another one in the reaction. In this case, for the given chemical equation:

We evidence a 1:2 mole ratio of barium nitride to ammonia, for that reason, the student's setup:

Is incorrect, because the ammonia must be accompanied by a 2 rather than the 1 it is given there:

Thereby, the correct answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3"
Learn more about mole ratios: brainly.com/question/15288923
After 2 hours of research and calculations, the answer is E: Pepsi is bootleg
The formula for Lithium Iodide is LIL