I think the answer to this question is b but I’m not sure
Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:

The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:

The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.
Answer:
2.455 W
Explanation:
The power dissipated in each branch is ...
P = V^2/R
So, the branch powers are ...
branch 1: 18^2/220 ≈ 1.473 W
branch 2: 18^2/330 ≈ 0.982 W
Total power is ...
1.473 W + 0.982 W = 2.455 W
Answer:
Zero 1 = -1
Zero 2 = -3
Pole 1 = 0
Pole 2 = -2
Pole 3 = -4
Pole 4 = -6
Gain = 4
Explanation:
For any given transfer function, the general form is given as
T.F = k [N(s)] ÷ [D(s)]
where k = gain of the transfer function
N(s) is the numerator polynomial of the transfer function whose roots are the zeros of the transfer function.
D(s) is the denominator polynomial of the transfer function whose roots are the poles of the transfer function.
k [N(s)] = 4s² + 16s + 12 = 4[s² + 4s + 3]
it is evident that
Gain = k = 4
N(s) = (s² + 4s + 3) = (s² + s + 3s + 3)
= s(s + 1) + 3 (s + 1) = (s + 1)(s + 3)
The zeros are -1 and -3
D(s) = s⁴ + 12s³ + 44s² + 48s
= s(s³ + 12s² + 44s + 48)
= s(s + 2)(s + 4)(s + 6)
The roots are then, 0, -2, -4 and -6.
Hope this Helps!!!
An algorithm is itself a general step-by-step solution of your problem. ... The most important point here is that you must use algorithms to solve problem, one way or the other. Most of the time it's better to think about your problem before you jump to coding - this phase is often called design.