1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
5

Given a 8-bit ripple carry adder and the following four input scenarios: (i) A4 + 1F, (ii) AB+55, (iii) CA+34, (iv) 6D+29. a) Un

der which input scenario can adder generate correct output with the minimal delay? b) Under which input scenario can adder generate correct output with the maximum delay?

Engineering
2 answers:
Bogdan [553]3 years ago
5 0

Answer:

Answer for the question:

Given a 8-bit ripple carry adder and the following four input scenarios: (i) A4 + 1F, (ii) AB+55, (iii) CA+34, (iv) 6D+29. a) Under which input scenario can adder generate correct output with the minimal delay? b) Under which input scenario can adder generate correct output with the maximum delay?

Is given in the attachment.

Explanation:

Akimi4 [234]3 years ago
3 0

Answer:

With A4 + 1F input scenario, the adder can generate correct output with the minimal delay.

With AB + 55 input scenario, the adder can gcorrect output with the maximum delay.

Explanation:

A4 + 1F can be grounded to give the least significant bits and can generate correct output with the minimal delay, which AB + 55 can be grounded to give more significant bits(a0,b0) and can generate correct output with the maximum delay.

In 8-bit ripple carry adder. eight inputs a7 to a0 and b7 to b0 are applied to each of the full adder cell and output S7 to S0 represents eight bit sum from each full adder.

The input carry of the first half adder cell must be grounded for the correct addition of least significant bits (a0, b0) otherwise it will result in erroneous output

You might be interested in
It is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water entering at 20 °C?
vovangra [49]

Answer:

Yes, it is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water that is entering at 20 °C because this temperature (20 °C) of the external cooling water is less than the saturation temperature of steam which is which is 45.81 °C, and heated by a boiler; as a result of this condition, coupled with the assumption that the turbine, pump, and interconnecting tube are adiabatic, and the condenser exchanges its heat with the external cooling river water, it possible to maintain a pressure of 10 kPa.

5 0
3 years ago
You are to design two CONCEPTUALLY different synchronous state machines (Mealy and Moore) that perform the task described below.
allochka39001 [22]
Answer:








Explanation:









I hope this helps!
3 0
3 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
3 years ago
Water at 200C flows through a pipe of 10 mm diameter pipe at 1 m/s. Is the flow Turbulent ? a. Yes b. No
Degger [83]

Answer:

Yes, the flow is turbulent.

Explanation:

Reynolds number gives the nature of flow. If he Reynolds number is less than 2000 then the flow is laminar else turbulent.

Given:

Diameter of pipe is 10mm.

Velocity of the pipe is 1m/s.

Temperature of water is 200°C.

The kinematic viscosity at temperature 200°C is 1.557\times10^{-7}m2/s.

Calculation:

Step1

Expression for Reynolds number is given as follows:

Re=\frac{vd}{\nu}

Here, v is velocity, \nu is kinematic viscosity, d is diameter and Re is Reynolds number.

Substitute the values in the above equation as follows:

Re=\frac{vd}{\nu}

Re=\frac{1\times(10mm)(\frac{1m}{1000mm})}{1.557\times10^{-7}}

Re=64226.07579

Thus, the Reynolds number is 64226.07579. This is greater than 2000.

Hence, the given flow is turbulent flow.

5 0
3 years ago
Why is it better for a CPU to have more than one cache?
Tomtit [17]

Answer:

In general a cache memory is useful because the speed of the processor is higher than the speed of the ram . so reducing the number of memory is desirable to increase performance .

Explanation:

.

.

#hope it helps you ..

(◕ᴗ◕)

3 0
2 years ago
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R = 500 Ω) are connected in series. A 44.0-Hz AC generator
    11·1 answer
  • Please help me fast, I don’t have time
    15·1 answer
  • A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is λ/30, and the loop is connect
    15·1 answer
  • Hi im ***ar and im doing sculptural but what should it be about star wars or Marvel
    9·1 answer
  • Please help i will give brainilest
    12·2 answers
  • 7 to 1 inch above the stock
    5·1 answer
  • 3. Determine the most unfavorable arrangement of the crane loads and
    6·1 answer
  • Your duty is to construct the above circuit and change Potentiometer resistance until you see 1v 2v……12v at the output voltage w
    6·1 answer
  • What is software certification? Discuss its importance in the changing scenario of software industry. ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!