s - orbitals have a spherical symmetry and the probability of finding an electron in an s orbital is equal for equal distance in x, y or z direction. i mean the probability of lets say an electron found at a distance 10 units from nuclues, its value will be same for x, y and z when u go 10 units distnace from nucleus in these directions. then the value at 5 units would be some value which also would be same for x,y and z.
Easier explanation is that if u place a ball, can u tell towards which axis it is oriented? no, its equally in all directions. So, non- directional.
However, if you have p- orbitals like dumb bells, a dumb bell can be oriented in three different directions, either x or y or z. see the pics.
I believe it is <span>d. the bonds of both the reactants and the products are formed.</span>
Answer:
Purpose: To become familiar with the techniques for separation of amixture of solids.
Explanation:
a mixture of pure substances. If you have a mixture of tennis ballsand marbles (not pure substances by the way), it would be easy toseparate the mixture. However, it is more difficult to separate asand (also not a pure substance) and salt mixture. Even with verygood tweezers and a magnifying glass, it would be extremelytedious. You could take advantage of the fact that salt dissolvesin water and sand does not. To separate iron powder from an ironand sand mixture you can take advantage of the magnetic propertiesof iron and separate the mixture.
To summarize a complete procedure for separating a mixture ofseveral substances, it is best to prepare a flow chart. A flowchartis a schematic representation of an algorithm or a stepwiseprocess, showing the steps as boxes of various kinds, and theirorder by connecting these with arrows. Flowcharts are used indesigning or documenting a process.
Explanation:
pls, refer to the above picture, i hope you will find it helpful.
Answer:
0.85 mol/L.
Explanation:
- Molarity is defined as the no. of moles of solute dissolved in a liter of the solution.
<em>M = (no. of moles of solute)/(Volume of the solution (L))</em>
no. of moles of calcium phosphate = 2.125 mol.
Volume of the solution = 2.5 L.
<em>∴ M of calcium phosphate</em> = (2.125 mol)/(2.5 L) = <em>0.85 mol/L.</em>