Answer:
The measure of an interior angle of a regular 15-gon is 120°.
Step-by-step explanation:
We need to determine the measure of the size of an interior angle of a regular 15-gon having 15 sides.
Thus,
The number of sides n = 15
Hence,
Using the formula to determine the measure of an interior angle of a regular 15-gon is given by
(n - 2) × 180° = n × interior angle
substitute n = 15
(15 - 2) × 180 = 15 × interior angle
13 × 180 = 15 × interior angle
Interior angle = (10 × 180) / 15
= 1800 / 15
= 120°
Therefore, the measure of an interior angle of a regular 15-gon is 120°.
If you divid 8.4 x 107 and 3 x 103 you should get 2.8 x 104
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C




![\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%202%5Csin%20C%5Ccdot%20%5B%5Ccos%20%28A-B%29%2B%5Ccos%20%28A%2BB%29%5D)


LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C 
<span>For exponential decrease use the formula P(1 - r)^t
p: initial amount
r: rate of change or percent of decrease (be sure to put in decimal form or you wont get the right answer)
t: amount of time (in years)
1,000,000 (1-0.042)^15 =
$525,391.01
(also make sure to use pemdas or order of operations when solving) hope this helps :)</span>
Answer:
90
Step-by-step explanation: