The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Initial speed is less than final speed
Answer:
Flutter
Explanation:
Flutter is a type of arrhythmia that causes very fast and regular ryth of the atria of about 250 beats per minute.
Arrhythmia can be defined as any sort of irregularity heart rate or rhythm is also called as dysrhythmia.
Arrhythmias can be categorized as heart block, bradycardia, tachycardia, fibrillation, flutter, sick sinus syndrome, and is diagnosed by Electrocardiography.
In Flutter, the heart chambers do get sufficient time to get filled with blood completely prior to next contraction.
Refer to the 2th Law of Newton
F = m. a
F = 15 x 2.8 = 42 N