Answer:
Volcanic activity is widespread over the earth, but tends to be concentrated in specific locations. Volcanoes are most likely to occur along the margins of tectonic plates, especially in subduction zones where oceanic plates dive under continental plates. As the oceanic plate subducts beneath the surface, intense heat and pressure melts the rock. Molten rock material, magma, can then ooze its way toward the surface where it accumulates at the surface to create a volcano. Volcanic activity can be found along the Mid-ocean ridge system as well. Here, oceanic plates are diverging and magma spreads across the ocean floor, ultimately being exposed at the surface. Crustal spreading long the ridge is partly responsible for the volcanic activity of Iceland. It is also thought that a "hot spot" lies beneath the island that contributes to volcanism.
The answer should be D) Cold air because even though its true sound can travel through all types of matter, air which is a gas, can travel but it travels SLOWLY while sound travels quickly in SOLIDS.
Answer:
A + B = C Ax = 2 Ay = 0 Bx = 0 By = 6
Ax + Bx = Cx = 2
Ay + By = Cy = 6
C = (2^2 + 6^2)^1/2 = 6.32
Tan Cy / Cx = 6 / 2 = 3
Cy at 71.6 deg
<span> (26 m/s)(1 rotation/0.62π m) ≈ 13.35 rotations/s that will do pig that'll do</span>
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa