Answer:
The correct answer will be "
". The further explanation is given below.
Explanation:
The potential energy will be,
⇒ 
The expression of force will be,
⇒ 
⇒ 
⇒ 
Force seems to be appealing because the expression has been negative. It therefore means that the force or substance is acting laterally in on itself.
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
Answer:
Explanation:
The sun is made up of 6 parts. Namely:
- The core
- The radiation zone
- The convection zone
- The photosphere
- The chromosphere and
- The corona
The convection area is just above the radiation zone. As materials from the suns core are heated, they rise above the radiation zone towards the EDGE of the convection area then sinks back again into the radiative zone for more heat.
The radiative zone is 12.6 million Fahrenheit hot and is just above the core.
The core of the son is not solid but plasma whose motion is like gas. Its temperature stands at 48 million Fahrenheit
Cheers
Answer:
1.82 rad/s².
Explanation:
Applying,
α = (ω₂-ω₁)/t..................... Equation 1
Where α = angular acceleration of the fan blades, ω₂ = final angular velocity of the fan blades, ω₁ = initial angular velocity of the fan blades, t = time.
Given: ω₂ = 350 rpm = (350×0.1047) rad/s = 36.645 rad/s. ω₁ = 250 rpm = (250×0.1047) rad/s = 26.175 rad/s, t = 5.75 s.
Substitute into equation 1
α = (36.645-26.175)/5.75
α = 10.47/5.75
α = 1.82 rad/s².
Hence the magnitude of the angular acceleration of the fan blades = 1.82 rad/s²
You can use the equation V=Vo+at since the acceleration is constant. Plugging in the values you know, you will get an answer of 3.75 seconds