Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
(50 gal / 5 min) x (.0037854 m³/gal) x (1 min / 60 sec)
= (50 · 0.0037854 · 1) / (5 · 60) m³/sec
= 0.000631 m³/sec
Answer:
16.8 lb is the force on the brake pad of one wheel.
Explanation:
Force applied on the piston = 
Area of the piston = 
Force applied on the brakes = 
Area of the brakes = 
Applying Pascal's law: 'For an incompressible fluid pressure at one surface is equal to the pressure at other surface'.


16.8 lb is the force on the brake pad of one wheel.
Answer:
588 J
Explanation:
PE (potential energy) = (mass) x (gravity) x (height)
mass = 12 kg
gravity = 9.8m/s^2
height = 5 m
PE = (12) x (9.8) x (5) = 588 J (Joules)