1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
5

Find the voltage change when: a. An electric field does 12 J of work on a 0.0001-C charge. b. The same electric field does 24 J

of work on a 0.0002-C charge.
Physics
1 answer:
kondaur [170]3 years ago
7 0

Explanation:

Given that,

(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :

V=\dfrac{W}{q}

V=\dfrac{12}{0.0001}

V=12\times 10^4\ Volt

(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :

V=\dfrac{W}{q}

V=\dfrac{24}{0.0002}

V=12\times 10^4\ Volt

Therefore, this is the required solution.

You might be interested in
A radioactive isotope of the element potassium decays to produce argon. If the ratio of argon to potassium is found to be 31:1,
iris [78.8K]

Answer:

Explanation:

Argon to potassium ratio after 1 half life = 1:1

After 2 half lives = 75/25= 3:1

After 3 half lives = 87.5/12.5= 7:1

After 4 half lives = 93.75/6.25 = 15:1

After 5 half lives = 96.875/3.125 = 31/1

8 0
3 years ago
How do you find the change in potential energy
ratelena [41]

P.E = mgh

This is the formula for potential energy.

This is where m is mass, g is the acceleration due to gravity, and h is height.

All you have to do is multiply all these numbers together.

3 0
3 years ago
Any 3 differences between telescope and microscope
Keith_Richards [23]
An instrument used to observe or imagine very small object using an optical mangifier
mirco cell.
Telescope is a magnifer of distance object
4 0
3 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
2 years ago
A pencil has a density of 0.875 g/ml. It has a volume of 4.0 ml. Find the mass
loris [4]

Answer:

To find the mass using density and volume we just multiply them against each other which causes ml to cancel and just leaves us with grams which represents how much the item weights.

mass=density*volume

mass=0.875\frac{g}{ml}*4.0\ ml

mass=3.5\ g

Therefore, our final answer is that our pencil weight 3.5 grams

<u><em>Hope this helps!  Let me know if you have any questions</em></u>

3 0
2 years ago
Other questions:
  • A car engine burns gas at 495 K, and exhausts to the air at 293 K. If it ran at the highest possible efficiency, how much input
    7·1 answer
  • A planet has two
    7·1 answer
  • A____ is a type of inclined plane that's mechanical advantage is length divided by thickness. Please answer the blank.
    11·1 answer
  • How to find initial velocity in projectile motion problems when you are not given the vlocity?
    10·1 answer
  • ¿Alguien me puede ayudar? Problema: Un niño le pide gastada a su papá y éste le contesta que le dará los $120 que tiene en su bo
    15·1 answer
  • What is the first law of gravity??
    12·1 answer
  • Identifying the factors contributing to and acting as determinant factors of health disparities during the program theory and de
    12·1 answer
  • the person is not able to see the far lying object clearly. which type of lens will the doctor prescribe him give reason?
    8·1 answer
  • Remember to identify all your data, write the equation, and show your work.
    14·1 answer
  • Why doesn’t the total pressure increase when more gas is added to the chamber? (hint: what would you see if the volume of the ch
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!