The mass attached to the spring must be 0.72 kg
Explanation:
The frequency of vibration of a spring-mass system is given by:
(1)
where
k is the spring constant
m is the mass attached to the spring
We can find the spring constant by using Hookes' law:

where
F is the force applied on the spring
x is the stretching of the spring
When a mass of m = 2.82 kg is applied to the spring, the force applied is the weight of the mass, so we have

and using
and
, we find

Now we want the frequency of vibration to be
f = 7.42 Hz
So we can rearrange eq.(1) to find the mass m that we need to attach to the spring:

#LearnwithBrainly
Answer:
im pretty sure it is 3.0 K
Explanation:
BIg, big questions in Thermodynamics. ...
Not without "help" it can't. There are two versions of this. One is that it is impossible to take heat from something and convert it completely into work - there has to be some waste at a lower temperature. The other is that heat will not "spontaneously" go from a colder place to a warmer place. So, a domestic fridge needs a device to transfer the heat, that's that buzzing sound of a motor driving a refrigerant round in a cycle, taking heat out the fridge and making the surrounding warmer. It's also called a heat pump. The area near where the pump puts its heat can be felt to be warm.
Answer:
We define a vector as an object with a length and a direction.With no length, the zero vector is not pointing in any particular direction, so it has an undefined direction.
Explanation:
Pls mark me brainliest :)
Answer:
<u>Principal</u><u> </u><u>focus</u><u> </u><u>of</u><u> </u><u>concav</u><u>e</u><u> </u><u>lens</u><u> </u><u>-</u><u> </u>
★ The point at which rays parallel to principal axis coming from infinity appear to converge after being refracted from concave lens is called the principal focus of concave lens.
<em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>
• <u>Additional</u><u> information</u><u> </u><u>-</u><u> </u>
★ Principal focus - A number of rays parallel to the principal axis after reflection from a concave mirror meet at a point on the principal axis or appear to come from a point after reflection from a convex mirror on the principal axis. This is called principal focus.