Answer:
The diagram represents two charges, q1 and q2, separated by a distance d. Which change would produce the greatest increase in the electrical force between the two charges? *
Explanation:
doubling charge q1, only
A change in momentum is called impulse.
Im 70 percent sure that the right answer is chromosphere
Answer:
I_{total} = 10 M R²
Explanation:
The concept of moment of inertia in rotational motion is equivalent to the concept of inertial mass for linear motion. The moment of inertia is defined
I = ∫ r² dm
For body with high symmetry it is tabulated, in these we can simulate them by a solid disk, with moment of inertia for an axis that stops at its center
I = ½ M R²
As you hear they ask for the moment of energy with respect to an axis parallel to the axis of the disk, we can use the theorem of parallel axes
I = + M D²
Where I_{cm} is the moment of inertia of the disk, M is the total mass of the system and D is the distance from the center of mass to the new axis
Let's apply these considerations to our problem
The moment of inertia of the four discs is
I_{cm} = I
I_{cm} = ½ M R²
For distance D, let's use the Pythagorean Theorem. As they indicate that the coins are touched the length of the square is L = 2R, the distance from any spine to the center of the block is
D² = (R² + R²)
D² = R² 2
Let's calculate the moment of inertia of a disk with respect to the axis that passes through the center of the square
I = ½ M R2 + M R² 2
I = 5/2 M R²
This is the moment of inertia of a disc as we have four discs and the moment of inertia is a scalar is additive, so
= 4 I
I_{total} = 4 5/2 M R²
I_{total} = 10 M R²
Answer:
a) 3.78 m/s
b) 3.78 m/s
Explanation:
a )From the equations of kinematics we know that
Vf - Vi = at
since Initial speed Vi = 0
acceleration = 4.2 m/s2
so we have
Vf = a t
= (4.2) (0.9)
= 3.78 m/s
velocity at t = 0.9 s. m/s is 3.78 m/s
b) If the sprinter maintains constant velocity then acceleration becomes zero.
So velocity is 3.78 m/s