Answer:
a) AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Explanation:
a) AgNO3 + KI → Ag+ + NO3- + K+ + I-
Ag+ + NO3- + K+ + I- → AgI + KNO3
AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba^2+ + 2OH- + 2H+ + 2NO3-
Ba^2+ + 2OH- + 2H+ + 2NO3- → Ba(NO3)2 + 2H2O
Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → 6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3-
6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3- → Ni3(PO4)2 + 6NaNO3
2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → 2Al^3+ + 6OH- + 6H+ + 3SO4^2-
2Al^3+ + 3OH- + 3H+ + 3SO4^2- → Al2(SO4)3 + 6H2O
2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Explanation:
Endothermic reactions are chemical reactions in which the reactants absorb heat energy from the surroundings to form products. These reactions lower the temperature of their surrounding area, thereby creating a cooling effect. Physical processes can be endothermic as well – Ice cubes absorb heat energy from their surroundings and melt to form liquid water (no chemical bonds are broken or formed).
When a chemical bond is broken, it is usually accompanied by a release of energy. Similarly, the formation of chemical bonds requires an input of energy. The energy supplied/released can be of various forms (such as heat, light, and electricity). Endothermic reactions generally involve the formation of chemical bonds through the absorption of heat from the surroundings. On the other hand, exothermic reactions involve the release of heat energy generated from bond-breakage.
Endothermic Reaction Examples
Ammonium nitrate (NH4NO3), an important component in instant cold packs, dissociates into the ammonium cation (NH4+) and the nitrate anion (NO3–) when dissolved in water
The grams of carbon dioxide that are in 35.6 liters of Co2 is calculates as below
calculate the number of moles of CO2
At STP 1 mole = 22.4 L
what about 35.6 liters
= 1mole x 35.6 liters/ 22.4 liters = 1.589 moles
mass of CO2 = moles x molar mass of CO2
= 1.589 mol x 44 g/mol = 69.92 grams
Atoms are generally neutral because they have an equal amount of protons and electrons.
Answer : The Bronsted-Lowry theory was not against the Arrhenius theory, rather it was just a modification to the previous theory of acids and bases. Hydroxide ions are considered as bases because they have the tendency to accept hydrogen ions from acids and form water.
An acid was the one which produces hydrogen ions in solution because it reacts with the water molecules by giving a proton to them.
In a nutshell, he described bases as hydrogen acceptor and acids as hydrogen donors.