1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
3 years ago
10

1. Hoai Nguyen, a Physics 2A student, drop a soccer ball from the roof of the new science building. The ball strikes the ground

in 3.30 s later. You may ignore air resistance, so the ball is in free fall. How tall, in meters, is the building?
2. How fast was the ball moving right before hitting the floor?

3. Thu Tran, another Physics 2A student, grabs the ball and kicks it straight up to Hoai Nguyen, who is still up on the building rooftop. Assuming that the ball is kicked at 0.50 m above the ground and it goes on a vertical path, what is the minimum velocity required for the ball to make it to the building rooftop? Ignore air resistance. (Hint: the ball will pass the rooftop level with a higher speed...)
Physics
1 answer:
icang [17]3 years ago
6 0

Answer:

1. 53.415 m

2. 32.373 m/s

3. 30.82 m/s

Explanation:

Let g = 9.81 m/s2. We can use the following equation of motion to calculate the distance traveled by the ball in 3.3s, and the velocity it achieved

1.s = gt^2/2 = 9.81*3.3^2/2 = 53.415 m

2.v = gt = 9.81*3.3 = 32.373 m/s

3. If the ball is kicked at 0.5 m above the ground then the net distance between the ball and the roof top is

53.415 - 0.5 = 48.415 m

For the ball to at least make it to the roof top at speed v = 0 m/s. We can use the following equation of motion to calculate the minimum initial speed

v^2 - v_0^2 = 2g\Delta s

where v = 0 m/s is the final velocity of the ball when it reaches the rooftop, v_0 is the initial velocity, \Delta s = 48.415 is the distance traveled, g = -9.81 is the gravitational acceleration with direction opposite with velocity

0 - v_0^2 = 2*(-9.81)*48.415

v_0^2 = 950

v_0 = \sqrt{950} = 30.82 m/s

You might be interested in
When the starter motor on a car is engaged, there is a 290 A current in the wires between the battery and the motor. Suppose the
Tema [17]

Answer:

33.6\times10^{-4}}\text{ m} = 3.36 mm

Explanation:

From Ohm's law,

V = IR (Voltage = Current * Resistance)

R = \dfrac{V}{I}

The geometric definition of resistance is

R = \rho\dfrac{l}{A}

where \rho is the resistivity of the material, l  and A are the length and cross-sectional area, respectively.

A = \rho\dfrac{l}{R}

A = \rho\dfrac{l\timesI}{V}

Since the wire is assumed to have a circular cross-section, its area is given by

A = \pi\dfrac{d^2}{4} where d is the diameter.

\pi\dfrac{d^2}{4} = \rho\dfrac{l\timesI}{V}

d = \sqrt{\dfrac{4\rho l I}{\pi\times V}}

Resistivity of copper = 1.68\times10^{-8}. With these and other given values,

d = \sqrt{\dfrac{4\times1.68\times10^{-8}\times1.5\times290}{3.14\times 0.55}}

d = \sqrt{1128.43\times10^{-8}}

d = 33.6\times10^{-4} \text{ m}

5 0
3 years ago
To initiate a nuclear reaction, an experimental nuclear physicist wants to shoot a proton into a 5.50-fm-diameter 12C nucleus. T
Fantom [35]

Answer:

V_1= 3.4*10^7m/s

Explanation:

From the question we are told that

Nucleus diameter d=5.50-fm

a 12C nucleus

Required kinetic energy K=2.30 MeV

Generally initial speed of proton must be determined,applying the law of conservation of energy we have

            K_2 +U_2=K_1+U_1

where

K_1 =initial kinetic energy

K_2 =final kinetic energy

U_1 =initial electric potential

U_2 =final electric potential

mathematically

   U_2 = \frac{Kq_pq_c}{r_2}

where

r_f=distance b/w charges

q_c=nucleus charge =6(1.6*10^-^1^9C)

K=constant

q_p=proton charge

Generally kinetic energy is know as

         K=\frac{1}{2}  mv^2

Therefore

         U_2 = \frac{Kq_pq_c}{r_2} + K_2=\frac{1}{2}  mv_1^2 +U_1

Generally equation for radius is d/2

Mathematically solving for radius of nucleus

         R=(\frac{5.50}{2}) (\frac{1*10^-^1^5m}{1fm})

         R=2.75*10^-^1^5m

Generally we can easily solving mathematically substitute into v_1

   q_p=6(1.6*10^-^1^9C)

   K_1=9.0*10^9 N-m^2/C^2

   U_1= 0

   R=2.75*10^-^1^5m

   K=2.30 MeV

   m= 1.67*10^-^2^7kg

   V_1= (\frac{2}{1.67*10^-^2^7kg})^1^/^2 (\frac{(9.0*10^9 N-m^2/C^2)*(6(1.6*10^-^1^9C)(1.6*10^-^1^9C)}{2.75*10^-^1^5m+2.30 MeV(\frac{1.6*10^-^1^3 J}{1 MeV}) }

    V_1= 3.4*10^7m/s

Therefore the proton must be fired out with a speed of V_1= 3.4*10^7m/s

8 0
3 years ago
What is the chemical formula for ammonium hydroxide
hoa [83]
NH4OH is the answer. Hope this helps you.
8 0
3 years ago
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
4 years ago
Answer this please nowww
Viefleur [7K]
(3) The frictional force exerted by the floor on the box
4 0
3 years ago
Other questions:
  • A ball is dropped from rest from the top of a 6.15-m-tall building, falls straight downward, collides in-elastically with the gr
    10·1 answer
  • IE is the energy required to remove an electron from an atom. As atomic radius increases, the valence electrons get farther from
    10·1 answer
  • Scientists estimate the rate of a wildebeest running at full speed to be 66 feet per second. Write a function rule to describe t
    5·2 answers
  • How does the motion of an airplane compare to the motion of a rocket ?
    11·1 answer
  • Introductory Astronomy1. Light is absorbed and emitted in the form ofwhich are "packets" ofelectromagnetic radiation that carry
    7·1 answer
  • A block of mass 4 kilograms is initially moving at 5m/s on a horizontal surface. There is friction between the block and the sur
    6·1 answer
  • How does the energy in a system of magnets change when two magnets repel and move away from each other
    12·1 answer
  • What part of the atom takes up most of the atoms space?
    10·2 answers
  • How many half-lives must go by for the radioactivity of this isotope to drop to (1/512) of its original value?
    11·1 answer
  • How far does an object travel if it is moving at a speed of 4 m/s for 3.2 seconds?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!