Answer:
The direction of the car’s change in linear momentum is 149.04° West of North
Explanation:
Momentum is defined as the product of mass of a body and its velocity
Momentum = mass × velocity
Change in Momentum = mass × change in velocity
∆P = m∆v
∆P = m(v-u)
Given m = 1500kg
v = 25m/s
u = 15m/s
∆P = 1500(25-15)
∆P = 1500×10
∆P = 15,000kgm/s
Since the car first travels due East i.e +x direction
x = 25m/s
Travelling due south is negative y direction
y = -15m/s
Direction of the car change
θ = tan^-1(y/x)
θ = tan^-1(-15/25)
θ = tan^-1(-0.6)
θ = -30.96°
Since tan is negative in the second quadrant
θ = 180-30.96
θ = 149.04°
The direction of the car’s change in linear momentum is 149.04° West of North
Answer:
false.
Explanation:
Since temperature and kinetic energy of molecules are proportional, the more we increase the temperature of the solvent, the faster the solute will dissolve.
This increase of kinetic energy allows the solvent molecules to more effective break apart the solvent molecules that are held together by intermolecular forces.
Answer:
The slopes shows that the direction of the field is from -2 to +2, with three point charges, q₁, q₂ and q₃ at -2, 0 and +2 respectively.
Explanation:
Given;
The slope, dy/dx = 2x(y-6) - 4
2x(y-6) - 4 = 2xy - 12x - 4, divide through by 'x'
dy/dx = 2y -12 - 4/x
The slopes of the linear elements on the lines, x =0, y = 5, y = 6, y = 7.
At x = 0, and y = 5
dy/dx = 2y -12 - 4/x
dy/dx = 2(5) - 12 = -2
At x = 0, and y = 6
dy/dx = 2y -12 - 4/x
dy/dx = 2(6) - 12 = 0
At x = 0, and y = 7
= 2y -12 - 4/x
dy/dx = 2(7) - 12 = 2
Therefore, the slopes shows that the direction of the field is from -2 to +2, with three point charges, q₁, q₂ and q₃ at -2, 0 and +2 respectively.
What question are you asking?
Answer :
<em>(b) 4d orbitals would be larger in size than 3d orbitals</em>
<em>(e) 4d orbitals would have more nodes than 3d orbitals</em>
Explanation :
As we move away from one orbital to another, the distance between nucleus and orbital increases. So, 4d orbitals would be far to the nucleus than 3d orbitals.
Hence, 4d orbitals would be larger in size than 3d orbitals.
Number of nodes is any orbital is n - 1 where, n is principal quantum number.
So, number of orbital in 4d is 3.
And number of orbital in 3d is 2.
So, options (b) and (e) are correct.