Answer:
v = 98.75 km/h
Explanation:
Given,
The distance driver travels towards the east, d₁ = 135 km
The time period of the travel, t₁ = 1.5 h
The halting time, tₓ = 46 minutes
The distance driver travels towards the east, d₂ = 215 km
The time period of the travel, t₁ = 2 h
The average speed of the vehicle before stopping
v₁ = d₁/t₁
= 135/1.5
= 90 km/h
The average speed of vehicle after stopping
v₂ = d₂/t₂
= 215/2
= 107.5 km/h
The total average velocity of the driver
v = (v₁ +v₂) /2
= (90 + 107.5)/2
= 98.75 km/h
Hence, the average velocity of the driver, v = 98.75 km/h
Answer:
The magnitude of
is 4 V and phase of input voltage is zero
Explanation:
Given:
Output voltage 
Resistance
kΩ
Voltage gain 
For finding feedback resistance we use gain equation
Gain equation for non inverting op-amp is given by,


≅ 10 kΩ
For finding input voltage we use,


V
The Phase of
is zero because output voltage phase is 360°
Therefore, the magnitude of
is 4 V and phase of input voltage is zero
Base on the said question or problem that state and ask to calculate the current of the said light bulb and in my further calculation and further analysis, I would say that the current of the light bulb would be 0.0292. I hope you are satisfied with my answer and feel free to ask for more
The two types of mechanical waves are longitudinal waves, and transversal waves.
Answer:
53,130 J
Explanation:
When a certain substance absorbs heat, the temperature of the substance increases according to the equation:

where
Q is the amount of heat absorbed
m is the mass of the substance
C the specific heat capacity
the change in temperature of the substance
In this problem:
m = 2.3 kg is the mass of copper
is the increase in temperature
is the specific heat of copper
So, the amount of heat absorbed is:
