Answer:
A vase on a table overcomes gravity because of the upwards force of the table against it, which is stronger than the force of gravity. If you were to move the vase off the table it would no longer have anything stopping gravity from breaking it.
Explanation:
Answer:
d. 127 g/mol.
Explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!
He has to use a different colored light at a higher frequency.
Answer:
Step 1 should be convert atoms to moles (n). Step 2 should be convert moles (n) to mass (m).
Step 1
Use dimensional analysis to convert the number of atoms to moles.
1 mole atoms = 6.022 × 10²³ atoms
n(Ag) = 2.3 × 10²⁴ Ag atoms × (1 mol Ag/6.022 × 10²³ Ag atoms) = 3.8193 mol Ag
Step 2
Convert the moles of Ag to mass.
mass (m) = moles (n) × molar mass (M)
n(Ag) = 3.8193 mol Ag
M(Ag) = atomic weight on the periodic table in g/mol = 107.868 g Ag/mol Ag
m(Ag) = 3.8193 mol × 107.868 g/mol = 412 g Ag = 410 g Ag rounded to two significant figures
The mass of 2.3 × 10²⁴ Ag atoms is approximately 410 g.
Explanation:
Answer:
Option A - nucleus
Explanation:
A molecule is formed when two or more atoms join together chemically. If atoms combine that are of two or more different elements, we call that a compound. All compounds are molecules, but not all molecules are compounds.