Jj thomas' model contained electrons.
The current model contains a nucleus with electrons orbiting around it. :)
Answer: 3. F1 = F2
Explanation:
According to <u>Newton's law of Gravitation</u>, the force
exerted <u>between two bodies</u> or objects of masses
and
and separated by a distance
is equal to the product of their masses divided by the square of the distance:
(1)
Where
is the gravitational constant
Now, in the especific case of the Earth and the satellite, where the Earth has a mass
and satellite a mass
, being both separated a distance
, the force exerted by the Earth on the satellite is:
(2)
And the force exerted by the satellite on the Earth is:
(3)
As we can see equations (2) and (3) are equal, hence the magnitude of the gravitational force is the same for both:

Answer:
Hello! Your answer is BELOW
Explanation:
1.About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei.
2.The atomic weight of lead is quite variable in nature because the three heaviest isotopes are the stable end-products of the radioactive decay of uranium (238U to 206Pb and 235U to 207Pb) and thorium (232Th to 208Pb).
3.Mass defect for uranium-238 is 3.983 × 10-25 kg.
4.Energy and Mass Are Relative
The equation E = mc^2 states that the amount of energy possessed by an object is equal to its mass multiplied by the square of the speed of light.
Hope I helped! Ask me anything if you have any questions. Brainiest plz!♥ Hope you make a 100%. Have a nice morning! -Amelia♥
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2