Answer:
the light emitting must be of greater wavelength
Explanation:
For this exercise we must use the Planck equation
E = h f
And the speed of light
c = λ f
f = c / λ
We replace
E = h c / λ
The wavelength of the green light is of the order of 500 nm, let's calculate the energy
E = 6.63 10⁻³⁴ 3 10⁸ /λ
E = 1,989 10⁻²⁵ /λ
λ = 500 nm = 500 10⁻⁹ m
E = 1,989 10⁻²⁵ / 500 10⁻⁹
E = 3,978 10⁻¹⁹ J
That is the energy of the transition for a transition is an intermediate state the energy must be less, this implies that the wavelength must increase. For the explicit case of a state with half of this energy
= E / 2
= 3,978 10⁻¹⁹ / 2 = 1,989 10⁻¹⁹
Let's clear and calculate
λ = h c / E
λ = 1,989 10⁻²⁵ / 1,989 10⁻¹⁹
λ = 1 10⁻⁶ m
Let's reduce to nm
λ = 1000 nm
This wavelength is in the infrared region
the light emitting must be of greater wavelength
The letter “j” is never found on the periodic table. As for numbers, there’s an infinite amount
Answer:
63 m
Explanation:
Average speed of swimming = 45 m/min
Time = 1 minute 24 seconds
Converting time into minutes:
Formula:
Putting values, we get.
Thus, Alex swims for 63 m in 1 minute and 24 seconds.
Answer:
6 gallons
Explanation:
At 30 mph, the fuel mileage is 25 mpg.
After 5 hours, the distance traveled is:
30 mi/hr × 5 hr = 150 mi
The amount of gas used is:
150 mi × (1 gal / 25 mi) = 6 gal