Answer:
1000 kgm²/s, 400 J
1000 kgm²/s, 1000 J
600 J
Explanation:
m = Mass of astronauts = 100 kg
d = Diameter
r = Radius = 
v = Velocity of astronauts = 2 m/s
Angular momentum of the system is given by

The angular momentum of the system is 1000 kgm²/s
Rotational energy is given by

The rotational energy of the system is 400 J
There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

Energy

The new energy will be 1000 J
Work done will be the change in the kinetic energy

The work done is 600 J
So,
GPE (graviational potential energy) = mass x g x height
GPE is depends on where zero height is defined. In this situation, we define h = 0 as the initial height.



The builder has gained 18.375 kJ of PE.
Momentum is simply a quantity that measures the impact of a moving body over something is due to the mass it posseses or the velocity with which it is moving.
Mathematically,ut is the product of mass and velocity of a body.
It is represented by capital p...(P)
P=mv
Solution to the problem:
we know P=mv
For mass,eliminate m from the equation,
m=P/v
Put values,
m=5000/5=1000kg
In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)