-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
The complete cycle of phases lasts 29.531 days.
From New Moon to Full Moon is half of that . . . 14.765 days,
which is very close to 2 weeks.
Answer:
B) waves speed up
C) waves bend away from the normal
Explanation:
The index of refraction of a material is the ratio between the speed of light in a vacuum and the speed of light in that medium:

where
c is the speed of light in a vacuum
v is the speed of light in the medium
We can re-arrange this equation as:

So from this we already see that if the index of refraction is lower, the speed of light in the medium will be higher, so one correct option is
B) waves speed up
Moreover, when light enters a medium bends according to Snell's Law:

where
are the index of refraction of the 1st and 2nd medium
are the angles made by the incident ray and refracted ray with the normal to the interface
We can rewrite the equation as

So we see that if the index of refraction of the second medium is lower (
), then the ratio
is larger than 1, so the angle of refraction is larger than the angle of incidence:

This means that the wave will bend away from the normal. So the other correct option is
C) waves bend away from the normal
Answer:
14 m/s²
Explanation:
Start with Newton's 2nd law: Fnet=ma, with F being force, m being mass, and a being acceleration. The applied forces on the left and right side of the block are equivalent, so they cancel out and are negligible. That way, you only have to worry about the y direction. Don't forget the force that gravity has the object. It appears to me that the object is falling, so there would be an additional force from going down from weight of the object. Weight is gravity (can be rounded to 10) x mass. Substitute 4N+weight in for Fnet and 1kg in for m.
(4N + 10 x 1kg)=(1kg)a
14/1=14, so the acceleration is 14 m/s²