T6,8tccc,xstr5unms58u5s4r4sn
Answer:
Kevin wants to make the firm private
Explanation:
Based on the information provided within the question in regards to the situation it seems that Kevin wants to make the firm private. Private Firms are companies that are owned by non-governmental entities or instead owned by a single individual or a very small amount of shareholders. Which is what Kevin seems to be wanting to do since he wants to buy back all the shares of the company so that only his family owns the company.
If you have any more questions feel free to ask away at Brainly.
Answer:
The gravitational pull from the Moon has the greatest effect on the size of the tides.
Hope this helps, :)
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)
Answer:
t = 1.09 s.
Explanation:
This is a one-dimensional kinematics question, so the equations of kinematics will be sufficient to solve the question.

This quadratic equation can be solved using determinant.

Of course, we will choose the positive time.