Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.
Answer:
The answer is B).
Explanation:
The correct way to write this sentence is: After I woke up this morning, I got me a tall glass of orange juice.
Answer:
The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Explanation:
We know that,
Mass of electron 
Rest mass energy for electron = 0.511 Mev
(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev
Using formula of rest,



(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev
Using formula of rest,



Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
High temperature gives the hydrogen atoms enough energy to overcome the electrical repulsion between the protons. Fusion requires temperatures of about 100 million Kelvin (approximately six times hotter than the sun's core).

Everything is in the universe.
That's what the word means.