1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
salantis [7]
3 years ago
13

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the

curve (a real problem on icy mountain roads). (a) Calculate the ideal speed in (m/s) to take a 100 m radius curve banked at 15°. m/s (b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 15.0 km/h?
Physics
1 answer:
PolarNik [594]3 years ago
3 0

Answer:

a. v₁ = 16.2 m/s

b. μ = 0.251

Explanation:

Given:

θ = 15 ° , r = 100 m , v₂ = 15.0 km / h

a.

To determine v₁ to take a 100 m radius curve banked at 15 °

tan θ  = v₁² / r * g

v₁ = √ r * g * tan θ

v₁ = √ 100 m * 9.8 m/s² * tan 15° = 16.2 m/s

b.

To determine μ friction needed for a frightened

v₂ = 15.0 km / h * 1000 m / 1 km * 1h / 60 minute * 1 minute / 60 seg

v₂ = 4.2 m/s

fk = μ * m * g

a₁ = v₁² / r = 16.2 ² / 100 m = 2.63 m/s²

a₂ = v₂² / r = 4.2 ² / 100 m = 0.18 m/s²

F₁ = m * a₁  ,  F₂ = m * a₂

fk = F₁ - F₂   ⇒  μ * m * g = m * ( a₁ - a₂)

μ * g = a₁ - a₂   ⇒  μ = a₁ - a₂ / g

μ = [ 2.63 m/s² - 0.18 m/s² ] / (9.8 m/s²)

μ = 0.251

You might be interested in
The intensity of a sound wave at a fixed distance from a speaker vibrating at 1.00 kHz is 0.750 W/m2. (a) Determine the intensit
sveticcg [70]

Answer:

a)   I = 3.63 W / m² , b)   I = 0.750 W / m²

Explanation:

The intensity of a sound wave is given by the relation

         I = P / A = ½ ρ v (2π f s_{max})²

         I = (½ ρ v 4π² s_{max}²) f²

a) with the initial condition let's call the intensity Io

        cte = (½ ρ v 4π² s_{max}²)

         I₀ = cte s² f₀²

        I₀ = cte 10 6

If frequency is increase f = 2.20 10³ Hz

         I = constant (2.20 10³) 2

         I = cte 4.84 10⁶

let's find the relationship of the two quantities

        I / Io = 4.84

        I = 4.84 Io

        I = 4.84 0.750

        I = 3.63 W / m²

b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or

        I = cte (f s)²

        I = constant (0.250 10³ 4)²

 

        I = cte 1 10⁶

         

the relationship

        I / Io = 1

        I = Io

        I = 0.750 W / m²

6 0
2 years ago
A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 V. It is used to charge two storage batt
Natali [406]

Complete Question

A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 \Omega. It is used to charge two storage batteries connected in series, each having an emf of 6.00 V and internal resistance of 0.300\Omega . If the charging current is to be 4.00 A, (a) what additional resistance should be added in series? At what rate does the internal energy increase in (b) the supply, (c) in the batteries, and (d) in the added series resistance? (e) At what rate does the chemical energy increase in the batteries?

Answer:

a

The additional resistance is R_z =  4.4 \Omega

b

The rate at which internal energy increase at the supply is Z_1 = 32 W

c

The rate at which internal energy increase in the battery  is  Z_1 = 32 W

d

The rate at which internal energy increase in the added series resistance is  Z_3 = 70.4 W

e

the increase rate of the chemically energy in the battery is C =  48 W

Explanation:

From the question we are told that

    The  open circuit voltage is  V =  40.0V

     The internal resistance is R = 2 \Omega

     The emf of each battery is e =  6.00 V

      The internal resistance of the battery is  r = 0.300V

      The  charging current is  I = 4.00 \ A

Let assume the the additional resistance to to added to the circuit is  R_z

 So this implies that

        The total resistance in the circuit is

                              R_T =  R + 2r +R_z

Substituting values

                             R_T = 2.6 +R_z

And  the difference in potential in the circuit is  

                         E = V -2e

                 =>   E =  40 - (2 * 6)

                        E =  28 V

Now according to ohm's law

            I = \frac{E}{R_T}

Substituting values

           4 = \frac{28}{R_z + 2.6}        

Making R_z the subject of the formula

So    R_z =  \frac{28 - 10.4}{4}

           R_z =  4.4 \Omega

The  increase rate of   internal energy at the supply is mathematically represented as

        Z_1  = I^2 R

Substituting values

     Z_1  = 4^2 * 2

     Z_1 = 32 W

The  increase rate of   internal energy at the batteries  is mathematically represented as

         Z_2 = I^2 r

Substituting values

         Z_2 = 4^2 * 2 * 0.3

         Z_2 = 9.6 \ W

The  increase rate of  internal energy at the added  series resistance  is mathematically represented as

        Z_3 = I^2 R_z

Substituting values

       Z_3 = 4^2 * 4.4

      Z_3 = 70.4 W

Generally the increase rate of the chemically energy in the battery is  mathematically represented as

         C = 2 * e * I

Substituting values

       C =  2 * 6  * 4

      C =  48 W

6 0
3 years ago
A hot air balloon is hovering in the air when it drops a 40 Kg food package to some lost golfers. If the package is dropped from
UNO [17]
We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:

Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.

(1/2)*m*v²=m*g*h, masses cancel out and we get:

(1/2)*v²=g*h, and we multiply by 2 both sides of the equation

v²=2*g*h, and we take the square root to get v:

v=√(2*g*h)

v=99.04 m/s

So the package is moving with the speed of v= 99.04 m/s when it hits the ground. 
5 0
3 years ago
If the rectangular barge is 3.0 m by 20.0 m and sits 0.70 m deep in the harbor, how deep will it sit in the river?
leva [86]

The harbour contains salt water while the river contains fresh water. So assuming that the densities of fresh water and salt water are:

density (salt water) = 1029 kg / m^3

density (fresh water) = 1000 kg / m^3

The amount of water (in mass) displaced by the barge should be equal in two waters.

mass displaced (salt water) = mass displaced (fresh water)

Since mass is also the product of density and volume, therefore:

<span>[density * volume]_salt water = [density * volume]_fresh water                 ---> 1</span>

 

First we calculate the amount of volume displaced in the harbour (salt water):

V = 3.0 m * 20.0 m * 0.70 m

V = 42 m^3 of salt water

Plugging in the values into equation 1:

1029 kg / m^3 * 42 m^3 = 1000 kg/m^3 * Volume fresh water

Volume fresh water displaced = 43.218 m^3

 

Therefore the depth of the barge in the river is:

43.218 m^3 = 3.0 m * 20.0 m * h

<span>h = 0.72 m        (ANSWER)</span>

8 0
3 years ago
A cubical surface surrounds a point charge q . Describe what happens to the total flux through the surface if (c) the surface is
valentina_108 [34]

Answer:

Gauss law states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.

Explanation:

Mathematically,

Φ=Q ϵo

Where;

Q is enclosed charge

ϵo is the permittivity of the free space

According to Gauss law, which states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.

Φ=Q ϵo

Where;

Q is enclosed charge

ϵo is the permittivity of the free space

If the cube is transformed into a sphere the total flux in the electric field remains unchanged or remains the same. This is because the gaussian law does not postulate that electric flux is dependent on the object in a plane. Hence, the transformation of the cube to a sphere does not affect the electric flux generated in the field.

To learn more about how the total flux through a sphere relates to the surface change, click brainly.com/question/4362789

#SPJ4

3 0
1 year ago
Other questions:
  • Mary and her younger brother Alex decide to ride the carousel at the State Fair. Mary sits on one of the horses in the outer sec
    13·1 answer
  • The Earth, the Sun, and the rest of the solar system are almost unimaginably old when viewed on a human time scale. While modern
    7·2 answers
  • A net force of 15 N is exerted on an encyclopedia to cause it to accelerate at a rate of 5m/s/s. Determine the mass of the encyc
    15·1 answer
  • How are different wavelengths of light affected by entering a prism?
    9·1 answer
  • Two parallel plates 19 cm on a side are given equal and opposite charges of magnitude 2.0 ✕ 10^−9 C. The plates are 1.8 mm apart
    12·1 answer
  • In a soccer game, a 1.3 kg ball is coming straight to a soccer player at a velocity of 13
    15·1 answer
  • What two things does light provide?
    9·1 answer
  • A 2.0-kg ball is at rest when a horizontal force of 5.0 N is applied. In the absence of friction, what is the speed of the ball
    8·1 answer
  • Which of the following affects the rate constant of a reaction?
    15·1 answer
  • Suppose the block is released from rest with the spring compressed 5.00 cm. The mass of the block is 1.70 kg and the force const
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!