Answer with Explanation:
We are given that a lamina occupies the part of the disk
in the first quadrant.
Radius is a distance between the center of circle and the point on boundary of circle.
By comparing the equation of circle
![(x-h)^2+(y-k)^2=r^2](https://tex.z-dn.net/?f=%28x-h%29%5E2%2B%28y-k%29%5E2%3Dr%5E2)
We have radius =7 and center=(0,0)
Where r= Distance between origin and the point on boundary of circle
Density function ![\rho (x,y)=kr^2=K(x^2+y^2)](https://tex.z-dn.net/?f=%5Crho%20%28x%2Cy%29%3Dkr%5E2%3DK%28x%5E2%2By%5E2%29)
Where K= Proportionality constant
![r=\sqrt{x^2+y^2}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7Bx%5E2%2By%5E2%7D)
![x=rcos\theta, y=rsin\theta](https://tex.z-dn.net/?f=x%3Drcos%5Ctheta%2C%20y%3Drsin%5Ctheta)
Radius varies from 0 to 7 and angle(
) varies from 0 to
.
Mass of the lamina=m=![\int_{0}^{\frac{\pi}{2}}\int_{0}^{7}kr^2\cdot rdrd\theta](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cint_%7B0%7D%5E%7B7%7Dkr%5E2%5Ccdot%20rdrd%5Ctheta)
![m=k\int_{0}^{\frac{\pi}{2}}[\frac{r^4}{4}]^{7}_{0} d\theta](https://tex.z-dn.net/?f=m%3Dk%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5B%5Cfrac%7Br%5E4%7D%7B4%7D%5D%5E%7B7%7D_%7B0%7D%20d%5Ctheta%20)
![m=k\int_{0}^{\frac{\pi}{2}}\frac{2401}{4} d\theta](https://tex.z-dn.net/?f=m%3Dk%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cfrac%7B2401%7D%7B4%7D%20d%5Ctheta)
![m=\frac{2401k}{4}\times \frac{\pi}{2}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B2401k%7D%7B4%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B2%7D)
![m=\frac{2401\pi}{8}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B2401%5Cpi%7D%7B8%7D)
Its first moments is given by
(
)
![M_x=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7}r sin\theta \cdot kr^3 dr d\theta](https://tex.z-dn.net/?f=M_x%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cint_%7B0%7D%5E%7B7%7Dr%20sin%5Ctheta%20%5Ccdot%20kr%5E3%20dr%20d%5Ctheta)
![M_x=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7} kr^4 sin\theta dr d\theta](https://tex.z-dn.net/?f=M_x%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cint_%7B0%7D%5E%7B7%7D%20kr%5E4%20sin%5Ctheta%20dr%20d%5Ctheta)
![M_x=K\frac{16807}{5}[-cos\theta]^{\frac{\pi}{2}}_{0}](https://tex.z-dn.net/?f=M_x%3DK%5Cfrac%7B16807%7D%7B5%7D%5B-cos%5Ctheta%5D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D_%7B0%7D)
(
)
![M_y=\int\int_{region}x \cdot \rho(x, y) dx dy](https://tex.z-dn.net/?f=M_y%3D%5Cint%5Cint_%7Bregion%7Dx%20%5Ccdot%20%5Crho%28x%2C%20y%29%20dx%20dy%20)
![M_y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7} kr^4 cos\theta drd\theta](https://tex.z-dn.net/?f=M_y%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cint_%7B0%7D%5E%7B7%7D%20kr%5E4%20cos%5Ctheta%20drd%5Ctheta)
![M_y=\frac{16807}{5}[sin\theta]^{\frac{\pi}{2}}_{0}](https://tex.z-dn.net/?f=M_y%3D%5Cfrac%7B16807%7D%7B5%7D%5Bsin%5Ctheta%5D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D_%7B0%7D)
![M_y=\frac{16807k}{5}(sin\frac{\pi}{2}-sin0)](https://tex.z-dn.net/?f=M_y%3D%5Cfrac%7B16807k%7D%7B5%7D%28sin%5Cfrac%7B%5Cpi%7D%7B2%7D-sin0%29)
(
)
Center of mass is given by
![m_x=\frac{M_x}{m}=\frac{\frac{16807}{5}}{\frac{2401k\pi}{8}}=\frac{56}{5\pi}](https://tex.z-dn.net/?f=m_x%3D%5Cfrac%7BM_x%7D%7Bm%7D%3D%5Cfrac%7B%5Cfrac%7B16807%7D%7B5%7D%7D%7B%5Cfrac%7B2401k%5Cpi%7D%7B8%7D%7D%3D%5Cfrac%7B56%7D%7B5%5Cpi%7D)
![m_y=\frac{M_y}{m}=\frac{\frac{16807k}{5}}{\frac{2401k\pi}{8}}=\frac{56}{5\pi}](https://tex.z-dn.net/?f=m_y%3D%5Cfrac%7BM_y%7D%7Bm%7D%3D%5Cfrac%7B%5Cfrac%7B16807k%7D%7B5%7D%7D%7B%5Cfrac%7B2401k%5Cpi%7D%7B8%7D%7D%3D%5Cfrac%7B56%7D%7B5%5Cpi%7D)
Hence, the center of mass of the lamina=(
)