Answer:
The intensity of the light from the bulb would be
3.501 x
W/
Explanation:
Given
The Power = 110 n W = 110 x
W
the distance r = 50 mm = 50 /1000 = 0.05 m
The intensity can be obtained with the relationship below;
I = Power/area ......1
The area of the sphere would be used in this case since the bulb is spherical; A=4π
Putting it into equation 1, we have;
I = P/ 4π
I = 110 x
/ 4 x π x 
I = 3.501 x
W/
Therefore the intensity of the light from the bulb would be
3.501 x
W/
It would be A because it would make sense
Answer:
Like charges repel
Different charges attract
Explanation:
When particles of similar charges are brought together, they repel each other and increase the distance of separation. Repulsion occurs because both two electrons have negative electrical charge forcing their lines of force to repel. However, when particles of opposite charges are brought nearer to each other, they attract each other and reduce the distance of separation.
Answer:
The temperature of an object increases when the molecules that make up that object move faster. Thermal energy is energy possessed by an object or system due to the movement of particles within the object or the system.
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.