When going round a corner your direction changes which means your velocity changes which means there is an acceleration.
Answer:
ΔX = λ = 0.68 m
Explanation:
Wave speed is related to wavelength and frequency by the equation
v = λ f
where the speed of sound is 340 m / s
λ = v / f
λ = 340/500
λ = 0.68 m
this is the wavelength, it is the minimum distance for which the wave epitates its movement, which is equal to the distance between two consecutive compressions of the sound
ΔX = λ = 0.68 m
Answer:

Explanation:
<u>Uniform Acceleration
</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
It's known a train moves from rest (vo=0) to a speed of vf=25 m/s in t=30 seconds. It's required to calculate the acceleration.
Solving for a:

Substituting:


Answer:
a. 0.18Hz
b. 0.56m/s
Explanation:
From the question we can deduct the following parameters
The wavelength, λ is define as the distance between two successful crest or trough and from the question we conclude that wavelength is 3.17m.
Also the period of the wave T can be computed as
T=22.6/4
T=5.65secs.
a. To compute the frequency, recall that frequency, F=1/period.
Hence,
F=1/5.65
F=0.18Hz
b. Next we compute the wave speed.
Wave speed=frequency *wavelength
Wave speed =0.18*3.17
Wave speed =0.56m/s
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!