Answer:
The total amount of heat needed will be
.
Explanation:
We will divide the calculation in two: First, the heat needed to melt the ice, and then the heat needed to warm the resulting liquid from 0°C to 37°C.



<em>i) </em>The fusion heat will be:

<em>ii)</em> The heat needed to warm the water from
to
will be:

So, the total amount needed will be the sum of these two results:
.
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)
Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.