Answer:
Mar's orbital path is more than that of Earth, thus it takes more number of days to orbit around the sun.
Explanation:
Mars takes over 500 days to orbit all the way around the sun than Earth because its distance from the sun (228 million kilometers) is greater than that of Earth (150 million kilometers) which takes it 365 days.
Planets that orbit closer to the sun take shorter time to orbit around the sun because the cover a shorter orbital distance and orbit faster than those planets further from the sun.
<u>For example</u>
Using Earth's distance from the sun, 150 million kilometers and the number of days taken to orbits the sun ,365 days and the distance Mars is from the Earth, 228 million kilometers, you can approximate the time Mar takes to orbit the sun as:
Earth 150 million kilometers = 365 days
Mars 228 million kilometers= ?
Cross product ; (228 *365) /150 =555 -----(a value closer to that in the question)
Answer:
B. Transformer
Explanation:
A transformer is a device that is used to either raise or lower voltages and currents in an electrical circuit. In modern electrical distribution systems, transformers are used to boost voltage levels so as to decrease line losses during transmission. It basically trades voltage for current in a circuit, while not affecting the total electrical power. This means it takes high-voltage electricity with a small current and changes it into low-voltage electricity with a large current, or vice versa.
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Answer:
Rs. 480.00
Explanation:
1kW = 1000W
therefore 500W = 0.5kW
20 × 24hrs = 480hrs in total.
0.5kW × 480hrs = 240kWh
if rs. 2 for 1kWh
then, 240kWh × 2 = Rs. 480.