<span>Several
important pollutants are produced by fossil fuel combustion: carbon
monoxide, nitrogen oxides, sulfur oxides, and hydrocarbons. In addition,
total suspended particulates contribute to air pollution, and nitrogen
oxides and hydrocarbons can combine in the atmosphere to form
tropospheric ozone, the major constituent of smog.
Carbon monoxide is a gas formed as a by-product during the incomplete
combustion of all fossil fuels. Exposure to carbon monoxide can cause
headaches and place additional stress on people with heart disease. Cars
and trucks are the primary source of carbon monoxide emissions.
Two oxides of nitrogen--nitrogen dioxide and nitric oxide--are formed in
combustion. Nitrogen oxides appear as yellowish-brown clouds over many
city skylines. They can irritate the lungs, cause bronchitis and
pneumonia, and decrease resistance to respiratory infections. They also
lead to the formation of smog. The transportation sector is responsible
for close to half of the US emissions of nitrogen oxides; power plants
produce most of the rest.
Sulfur oxides are produced by the oxidization of the available sulfur in
a fuel. Utilities that use coal to generate electricity produce
two-thirds of the nation's sulfur dioxide emissions. Nitrogen oxides and
sulfur oxides are important constituents of acid rain. These gases
combine with water vapor in clouds to form sulfuric and nitric acids,
which become part of rain and snow. As the acids accumulate, lakes and
rivers become too acidic for plant and animal life. Acid rain also
affects crops and buildings.
Hydrocarbons are a broad class of pollutants made up of hundreds of
specific compounds containing carbon and hydrogen. The simplest
hydrocarbon, methane, does not readily react with nitrogen oxides to
form smog, but most other hydrocarbons do. Hydrocarbons are emitted from
human-made sources such as auto and truck exhaust, evaporation of
gasoline and solvents, and petroleum refining.
The white haze that can be seen over many cities is tropospheric ozone,
or smog. This gas is not emitted directly into the air; rather, it is
formed when ozone precursors mainly nonmethane hydrocarbons and nitrogen
oxides react in the presence of heat and sunlight. Human exposure to
ozone can produce shortness of breath and, over time, permanent lung
damage. Research shows that ozone may be harmful at levels even lower
than the current federal air standard. In addition, it can reduce crop
yields.
Finally, fossil fuel use also produces particulates, including dust,
soot, smoke, and other suspended matter, which are respiratory
irritants. In addition, particulates may contribute to acid rain
formation.
Also, water and land pollution.
</span>
Answer:
it can allow more room for additional living things in the habitat
Explanation:
Use water for an example.
- Taking water can destroy a fish habitat.
- Using excess water can cause water to run out.
- Taking/using water leaves less amounts for others/organisms.
Taking water does not allow additional room for organisms in a habitat.
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731
Atoms are the smallest form of the substance. examples of atoms are in elemental forms such as copper, helium, silver. Diatomic molecules are made up of identical atoms. Examples are I2.. F2 and Br2. Formula units are those compounds that are made up of two or more elements such as -No2, KMnO4,<span>C3H8, MgCl2, HgBr2, Ba(OH)2</span>
Answer:
B. 1-Butene rightarrow (1) BH3: THF (2)H202, OH-
Explanation:
In the hydroboration of alkenes, an alkene is hydrated to form an alcohol with anti-Markovnikov orientation.
the reagent BH₃:THF is the way that borane is used in organic reactions. The BH₃ adds to the double bond of an alkene to form an alkyl borane. Peroxide hydrogen in basic medium oxidizes the alkyl borane to form an alcohol. Indeed, hydroboration-oxidation converts alkenes to alcohols by adding water through the double bond, with anti-Markovnikov orientation.