I will assume that the sign ? between the C and the CCH3 is a triple bond, and I will represent it by three vertical lines |||
So the reaction is:
<span>CH3CH2CH2CH2C ||| CCH3+2Br2 ---->
This is a typical reaction known as halogenation of alkines.
This is an addition reaction, i.e. the alkyne undergoes an addition of the Br2 (and it also happens with Cl2) to the triple bond to form a tetra halide.
.
Br Br
</span> | |
<span><span>CH3CH2CH2CH2C ||| CCH3+2Br2 ----> CH3 CH2 CH2 CH2 C - C</span> - CH3
| |
Br Br
</span>
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
It's well Explained below.
Explanation:
First of Excess product of CaCO_3 would be produced due to the fact that there would not be enough CaCl_2 to react with Na_2•CO_3. The main purpose of having stoichiometric quantities is for us to know the correct amount or near the correct amount of each reactant in order to create a product that will be close to the theoretical amount and thus have a higher percent yield.
If the density is higher than water than the object will sink