Neutron star: a newly formed neutron star can have a temperature of about 10^11 Kelvin to 10^12 Kelvin, but it can drop to 10^6 Kelvin. Its brightness is a million times fainter than the sun's brightness because of its size and distance from a point of view.
Dwarf star: Yellow dwarfs are small, main sequence star. <span>Red dwarfs are the most common type of star, </span>it's a small, cool, very faint, main sequence star whose surface temperature is under about 4,000 K.
Main sequence: has a temperature of about 10 million K. Its luminosity depends on the size and the mass of the star.
Red Giant: not normally as bright as the main sequence but it can create 1,000 to 10,000 times the luminosity that the sun gives off. The outer atmosphere is inflated, making the surface temperature to be as low as 5,000 K.
Supergiant: These stars have very "cool" surface temperatures that can range between 3500 and 4500 K (more or less). Depending on proximity, size, and mass, their luminosity can be either very high or very dim... though, they are normally very large stars.
Hope this helped!
Answer:
612 K
Explanation:
From the question given above, the following data were obtained:
Initial temperature (T₁) = 306 K
Initial pressure (P₁) = 150 kPa
Final pressure (P₂) = 300 kPa
Volume = 4 L = constant
Final temperature (T₂) =?
Since the volume is constant, the final (i.e the new) temperature of the gas can be obtained as follow:
P₁ / T₁ = P₂ / T₂
150 / 306 = 300 / T₂
Cross multiply
150 × T₂ = 306 × 300
150 × T₂ = 91800
Divide both side by 150
T₂ = 91800 / 150
T₂ = 612 K
Thus, the new temperature of the gas is 612 K
NaOH is hygroscopic
Explanation:
- A standard solution is a solution of known molarity or concentration.
- Standard solutions are used in determining the stoichiometric amount of desired species in an experiment.
- A solution of NaOH is not a standard solution because NaOH is hygroscopic in nature.
- By this, NaOH absorbs moisture from the atmosphere in considerable amount.
- This implies that one must find an air free environment to store and use the compound and accurately quantify it.
- This is why a solution of NaOH is standardize with a primary standard.
Learn more:
Titration brainly.com/question/4306497
#learnwithBrainly
Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L
They can know the impact and looking at how the prairie dogs interact with the environment