Answer:
b. - 184 J/K
Explanation:
- ΔSsurr = - ΔH/T....at constant P and T.
∴ ΔHrxn = 54.2 KJ = 54200 J
∴ T = 25°C ≅ 298.15 K
⇒ ΔSsurr = - (54200 J)/(298 K)
⇒ ΔSsurr = - 182 J/K ≅ - 184 J/K
Answer:
productivity and water depth
Explanation:
The productivity and the depth of water are both equally important as it directly affects the accumulation of biogenic sediments such as the siliceous ooze and calcareous ooze. In the equator and the coastal upwelling areas, and at the site of divergence of oceans, there occurs a high rate and amount of productivity, and these are considered to be the primary productivity.
The siliceous oozes are a good indicator of extensively high productivity in comparison to the carbonate oozes. The main reason behind this is that the silica can be easily dissolved in the surface water. On the other hand, the carbonates dissolve at a relatively lower ocean water depth, so there requires a high amount of surface productivity in order to allow these siliceous oozes to reach the ocean bottom.
Thus, the water depth and productivity, both are considered as the limiting factor in determining the accumulation of biogenic oozes.
Answer is: <span>the molarity of the diluted solution 0,043 M.
</span>V(NaOH) = 75 mL ÷ 1000 mL/L = 0,075 L.
c(NaOH) = 0,315 M = 0,315 mol/L.
n(NaOH) = c(NaOH) · V(NaOH).
n(NaOH) = 0,075 L · 0,315 mol/L.
n(NaOH) = 0,023625 mol.
V(solution) = 0,475 L + 0,75 L.
c(solution) = 0,023625 mol ÷ 0,550 L.
c(solution) = 0,043 mol/L.
Answer: because the tablet is already crushed and is easy for the organism to absorb instead of having to break it down
Explanation: