The acceleration of a rocket engine is given here, and after 50 seconds of flight, the engine fails, and we must determine the altitude of the rocket at the time the engine fails. Because the rocket starts from rest, the time taken is 50 seconds, the initial velocity is zero, and the acceleration is 22.9 meters per second square. So we use the kinamatics equation s equal to v. I t plus half 8 square. There is no acceleration at the start. 22.9 and t is 50 seconds, so displacement 2.86 times 10 to the power 4 is met. This is the rocket's displacement in 50 seconds, so this is the rocket's altitude when the engine fails.
<h3>What exactly is accelerate?</h3>
- In mechanics, acceleration is defined as the rate of change of an object's velocity with respect to time. Vector quantities are accelerations. The orientation of an object's acceleration is determined by the orientation of its net force.
- In his second law of motion, Sir Isaac Newton (1642-1727) defined acceleration as the ratio of a force acting on an object to its mass: a = f/m.
- Accelerate is a verb that means to speed up. When you press the gas pedal, the car accelerates. If you know someone who works at the consulate, you can speed up the process.
- Acceleration is the rate at which velocity changes over time, both in terms of speed and direction. A point or object moving in a straight line is accelerated if it accelerates or decelerates.
- Even if the speed is constant, motion on a circle is accelerated because the direction is constantly changing. Both effects contribute to acceleration in all other types of motion.
Hence, There is no acceleration at the start. 22. This is the rocket's displacement in 50 seconds, so this is the rocket's altitude when the engine fails.
To know more about Accelerate refer to:
brainly.com/question/460763
#SPJ4
Answer:
The block's mass should be 
Explanation:
Given:
Cart with mass 
From the conservation of energy before mass is added,

Where
amplitude of spring mass system,
spring constant

Now new mass
is added to the system,


Here, given in question frequency is reduced to half so we can write,

Where
frequency of system before mass is added,
frequency of system after mass is added.




Therefore, the block's mass should be 
Λ = 3*10^8 / 9*10^8 = 1/3 m
no. of wavelengths = 60/(1/3) = 180
using the law of refraction, the incidence is equal to the reflection, but not refraction
Answer:
554.27N
Explanation:
(a) The max frictional force exerted horizontally on the crate and the floor is,
Substitute the values,
μs=0.5
mass=113kg
g=9.81m/s
Ff=μsN
=μsmg
=(0.5 x 113 x 9.81)
Ff=554.27N