(a) 25lx
(b) 11.11lx
<u>Explanation:</u>
Illuminance is inversely proportional to the square of the distance.
So,

where, k is a constant
So,
(a)
If I = 100lx and r₂ = 2r Then,

Dividing both the equation we get

When the distance is doubled then the illumination reduces by one- fourth and becomes 25lx
(b)
If I = 100lx and r₂ = 3r Then,

Dividing equation 1 and 3 we get

When the distance is tripled then the illumination reduces by one- ninth and becomes 11.11lx
That measure is known as "acceleration"
a = ΔV / t
Hope this helps!
An Olympic high diver has gravitational potential energy because of her height. As she dives, kinetic energy becomes of her energy just before she hits the water.
Gravitational potential energy is the energy possessed or acquired by an object due to a change in its position when it is present in a gravitational field. In simple terms, it can be said that gravitational potential energy is an energy that is related to gravitational force or to gravity.
Kinetic energy is the energy of motion, observable as the movement of an object, particle, or set of particles.
When the high diver is standing stable and not moving , that diver has a gravitational potential energy because of the height . The moment she dives , before hitting the water , from being stationary she gained some momentum and come in motion , due to motion her gravitational potential energy will change to kinetic energy before hitting the ground.
To learn more about Gravitational potential energy here
brainly.com/question/15978356
#SPJ4
1) In a circular motion, the angular displacement

is given by

where S is the arc length and r is the radius. The problem says that the truck drove for 2600 m, so this corresponds to the total arc length covered by the tire:

. Using the information about the radius,

, we find the total angular displacement:

2) If we put larger tires, with radius

, the angular displacement will be smaller. We can see this by using the same formula. In fact, this time we have:
<span>The correct option is D. Soil can best be described as the loose covering of weathered rocks and decaying organic matter. There are different types of soil, the type of soil formed depends majorly on the type of parent rock from which the soil is formed and the amount of organic matter present in the soil.</span>