Answer: c living in a camber in an under water habitat
Explanation:
Given:
(Initial velocity)u=20 m/s
At the maximum height the final velocity of the ball is 0.
Also since it is a free falling object the acceleration acting on the ball is due to gravity g.
Thus a=- 9.8 m/s^2
Now consider the equation
v^2-u^2= 2as
Where v is the final velocity which is measured in m/s
Where u is the initial velocity which is measured in m/s
a is the acceleration due to gravity measured in m/s^2
s is the displacement of the ball in this case it is the maximum height attained by the ball which is measured in m.
Substituting the given values in the above formula we get
0-(20x20)= 2 x- 9.8 x s
s= 400/19.6= 20.41m
Thus the maximum height attained is 20.41 m by the ball
Answer:
The box of rocks will have depression which can be seen without touching the box.
Explanation:
The density of rocks is very large as compared with napkins. So, the weight of the rocks will be much more greater than that of napkins.
As both boxes have same volume the heavier box will show depression on the lower surface as compared to the lighter box. So, the box of rocks will have depression which can be seen without touching the box.