Answer:
(a) 1.093 rad/s^2
(b) 4.375 rad/s
(c) 8.744 rad/s
(d) 67.845 rad
Explanation:
initial angular velocity, ωo = 0
time, t = 8s
angular displacement, θ = 35 rad
(a) Let α be the angular acceleration.
Use second equation of motion for rotational motion

By substituting the values
35 = 0 + 0.5 x α x 8 x 8
α = 1.093 rad/s^2
(b) The average angular velocity is defined as the ratio of total angular displacement to the total time taken .
Average angular velocity = 35 / 8 = 4.375 rad/s
(c) Let ω be the instantaneous angular velocity at t = 8 s
Use first equation of motion for rotational motion
ω = ωo + αt
ω = 0 + 1.093 x 8 = 8.744 rad/s
(d) Let in next 5 seconds the angular displacement is θ.

By substituting the values
θ = 8.744 x 5 + 0.5 x 1.093 x 5 x 5
θ = 67.845 rad
31 m/s ÷ 9 m/s² = 3.44 s
Time = Change in velocity divided (÷) by acceleration.
simple machine is your answer
There’s nothing! No pictures
The law of inertia states objects have a tendency to resist a change in motion. Given that, when the bus moved forward abruptly, the passengers had a natural tendency to resist the change in motion. Since they weren't moving before, they fell back because they had a tendency to stay in their state of equilibrium.