Answer:
D.
Explanation:
But this just happen for big stars, like more than 20x the Sun mass.
Shortly: A nebula is a cloud of gas and dust, the material starts to be acummuleted and became a protostar (is like a big planet, almost a star). With enought mass this is a star, burn hydrogen and transform it in Helium.
This occurs in Main Sequence, is about almost all the life time of a star. Then starts the lack of hydrogen. Gravity compress everything, pressure goes up and heat all. Too much energy, Helium get burned and the star grews fast, became a Red Giant. Time pass and the fuel is over, no more making fusion, gravity compress the star, too much strenght, colapses, neutron star.
If it have pretty mass, ok. If have more than like 2x Sun mass, became a blackhole.
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s
Adhesive.
Adhesive is the force of attraction between molecules of different kind. Liquid flows upward the wick because the adhesive force between the wick and the liquid is higher than cohesive forces in the liquid.
When the adhesive force between the wick and the liquid is high we have capillarity taking place. This cause the liquid to move up the wick.
Work = force x distance
200 Newtons x 20 meters
= 4,000 Joules