Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
As the first astronaut throws the ball, lets assume it goes with v velocity and the mass of the ball be m
the momentum comes out be mv, thus to conserve that momentum the astronaut will move opposite to the direction of the ball's motion with the velocity mv/M (where M is the mass of the astronaut).
Explanation:
It is given that,
Power of EM waves, P = 1800 W
We need to find the intensity at a distance of 5 m. Also, the rms value of the electric field.
Intensity,

The formula that is used to find the rms value of the electric field is as follows :

c is speed of light and
is permittivity of free space
So,

Hence, this is the required solution.
I actually believe for the first question, it would be complete destructive interference as the amplitude and the approximate wavelength for each are the same and will completely or entirely cancel out, rather than simply decreasing or lowering the amplitude as in the bottom question.
The amplitude for the first will be 0, as the 2 waves will cancel each other out. The amplitude of the second, will be 3x, I believe, assuming the amplitude of the first is 2x and the second is 1x, in a constructive interference, I believe the amplitudes would add up.
Likewise for the bottom, I believe you would be subtracting the supposed amplitude of the first which is 2x from 1x which would be 1x.