1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
3 years ago
14

Determine the amount of potential energy of a 5-newton book that is moved to three different shelves on a

Physics
2 answers:
JulijaS [17]3 years ago
4 0
Multiply 5 newton by each height. 1st is 5 joules, 2nd is 7.5, while 3rd is 10 joules.
Elza [17]3 years ago
3 0

Yo sup??

potential energy is given by

U=mgh

mg=5 N

U1=5*1=5 J

U2=5*1.5=7.5 J

U3=5*2=10 J

Hope this helps.

You might be interested in
Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth
mylen [45]

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

4 0
3 years ago
Read 2 more answers
If you increase the mass of an object and want to move an object a specific distance, what do you need to do
Alexxandr [17]

If you increase the mass of an object and want to move an object a specific distance, then you need to do extra work than the earlier

<h3>What is work done?</h3>

The total amount of energy transferred when a force is applied to move an object through some distance

Work Done = Force * Displacement

For example, let us suppose a force of 10 N is used to displace an object by a displacement of 5 m then the work done on the object can be calculated by the above-mentioned formula

work done = 10 N ×5 m

                 =50 N m

Thus, when an object's mass is increased and it is desired to move it a certain distance, more work must be done than previously.

Learn more about work done from here

brainly.com/question/13662169

#SPJ1

3 0
1 year ago
What is everyone's take on time travel?
Andrew [12]

Answer:

Its not really possible I don't think. UNLESS! You fall into a manhole then find a wirling vortex in the sewers! : )

Explanation:

7 0
2 years ago
Which is the following is made up mostly of water
tatyana61 [14]

soil i think is this from apex?

8 0
3 years ago
Two 22.7 kg ice sleds initially at rest, are placed a short distance apart, one directly behind the other, as shown in Fig. 1. A
boyakko [2]

Newton's third law of motion sates that force is directly proportional to the rate of change of momentum produced

(a) The final speeds of the ice sleds is approximately 0.49 m/s each

(b) The impulse on the cat is 11.0715 kg·m/s

(c) The average force on the right sled is 922.625 N

The reason for arriving at the above values is as follows:

The given parameters are;

The masses of the two ice sleds, m₁ = m₂ = 22.7 kg

The initial speed of the ice, v₁ = v₂ = 0

The mass of the cat, m₃ = 3.63 kg

The initial speed of the cat, v₃ = 0

The horizontal speed of the cat, v₃ = 3.05 m/s

(a) The required parameter:

The final speed of the two sleds

For the first jump to the right, we have;

By the law of conservation of momentum

Initial momentum = Final momentum

∴ m₁ × v₁ + m₃ × v₃ = m₁ × v₁' + m₃ × v₃'

Where;

v₁' = The final velocity of the ice sled on the left

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₁' + 3.63 × 3.05

∴  22.7 × v₁'  = -3.63 × 3.05

v₁' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the left, v₁' ≈ -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

For the second jump to the left, we have;

By conservation of momentum law,  m₂ × v₂ + m₃ × v₃ = m₂ × v₂' + m₃ × v₃'

Where;

v₂' = The final velocity of the ice sled on the right

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₂' + 3.63 × 3.05

∴  22.7 × v₂'  = -3.63 × 3.05

v₂' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the right = -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

(b) The required parameter;

The impulse of the force

The impulse on the cat = Mass of the cat × Change in velocity

The change in velocity, Δv = Initial velocity - Final velocity

Where;

The initial velocity = The velocity of the cat before it lands = 3.05 m/s

The final velocity = The velocity of the cat after coming to rest =

∴ Δv = 3.05 m/s - 0 = 3.05 m/s

The impulse on the cat = 3.63 kg × 3.05 m/s = 11.0715 kg·m/s

(c) The required information

The average velocity

Impulse = F_{average} × Δt

Where;

Δt = The time of collision = The time it takes the cat to finish landing = 12 ms

12 ms = 12/1000 s = 0.012 s

We get;

F_{average} = \mathbf{\dfrac{Impulse}{\Delta \ t}}

∴ F_{average} = \dfrac{11.0715 \ kg \cdot m/s}{0.012 \ s}  = 922.625 \ kg\cdot m/s^2 = 922.625 \ N  

The average force on the right sled applied by the cat while landing, \mathbf{F_{average}} = 922.625 N

Learn more about conservation of momentum here:

brainly.com/question/7538238

brainly.com/question/20568685

brainly.com/question/22257327

8 0
2 years ago
Other questions:
  • A stone falls from ledge and takes 16 seconds to hit ground. The stone has an original velocity 0 m/s, How tall is the ledge?
    10·1 answer
  • You toss a racquetball directly upward and then catch it at the same height you released it 1.82 s later. assume air resistance
    9·1 answer
  • A horizontal desk surface measures 1.7 m by 1.0 m. If the Earth's magnetic field has magnitude 0.42 mT and is directed 68° below
    14·1 answer
  • Eld a distance r1 from P. The second particle is then released. Determine its speed when it is a distance r2 from P. Let q = 3.1
    14·1 answer
  • Crime is defined as a violation of<br> A. Safety<br> B. Morals<br> C. Law<br> D. Community
    6·2 answers
  • A tank has a gate that automatically opens if the water levelhis high enough. The gate has a squarecross section of side1m and c
    11·1 answer
  • PLEASE HELP! LAST DAY TO TURN IN AND IM SO BEHIND!!!
    9·2 answers
  • A 55 kg roller skater is at rest on a flat skating rink, a 198 N horizontal force is needed to set the skater in motion.
    9·1 answer
  • How long will it take a plane to fly 1256km<br> if it travels 500km/hr?
    11·1 answer
  • On Earth, the gravitational field strength is 10 N/kg. Calculate E for a 4 kg bowling ball that is being
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!