Answer:
Magnitude = 4.056 m
Direction = 42.3⁰
Explanation:
The vector is resolved in terms of the vertical and horizontal components. Let's look each of these separately.
The vector 4.40 is directed East. This automatically becomes a horizontal component.
But we know that there is a vector 3.40 North West. The angle the vector makes with the horizontal is 61⁰.
Resolving the vectors should yield the horizontal and vertical components:
Horizontal components
The first component is 4.40 m
The second one is derived by resolving 3.40 to the horizontal like this 3.40 × - cos 61⁰ = -1.648 m
Adding the horizontal component gives 4.40 m + ( -1.648 m) = 2.752 m
Vertical components
Resolve 3.40 with the angle 61⁰ like this: vertical comp = 3.41 × sin 61
= 2.98 m
The magnitude is given by √[(2.98)²+ (2.752)²] = 4.056 m Ans
The direction us given by tan⁻¹ (2.98/2.752) = 42.3⁰ Ans
Answer: c) with the same brightness
Explanation: The load in this case the bulb, is not polarized ( it has no positive and negative points) thus any connection relative to the battery (source) will have no effect on it brightness.
Also, brightness is a function of current and in this case the voltage ( from battery) and resistance of load (bulb) is constant, and according to ohms law (V=IR) if the current is constant at the first connection, it will be the same at the reversed connection.
The answer is C sorry if it’s wrong
Answer:
(θ) = 60°
Explanation:
Given:
Speed of canoe Vc = 2 m/s
Speed of River Vr = 1 m/s
Computation:
Vc (Cosθ) = Vr
2 (Cosθ) = 1
(Cosθ) = 1 / 2
(Cosθ) = (Cos60)
(θ) = 60°