1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
4 years ago
15

Need help factoring this expression

Mathematics
2 answers:
Sindrei [870]4 years ago
5 0

3x+9

3 is a factor of both 3 and 9

3(x+3)

Papessa [141]4 years ago
3 0

In order to factor the expression, you need to find one thing that's a factor of EACH term in the expression. So let's look at the terms.

-- factors of 3x :  1,  3,  x,  3x

-- factors of 9 :  1,  3,  9

The only things that are factors of both terms are 1 and 3.  We can ignore 1, because 1 is always a factor of anything.  That leaves us with 3 .  So we'll factor 3 out of the expression.

3x + 9  =  <em>3 (x + 3)</em>

You might be interested in
Which statement proves that F(x) is an exponential function
Alex_Xolod [135]

Answer:

Y=a*b^x

If xponent is a variable

Step-by-step explanation:

4 0
3 years ago
HELP PLEASEEEE!!
Viefleur [7K]

Answer:

40

Step-by-step explanation:

<h3>6×40⇒240</h3>
6 0
3 years ago
\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)
Vinvika [58]

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

6 0
3 years ago
Which statements are true
Dominik [7]
The first, third, and sixth are correct.
6 0
3 years ago
Read 2 more answers
If m is the variable, which mathematical sentence expresses the information below? The number of mice in the box plus 5 more add
Mazyrski [523]
M + 5 = 16
16 - 5 = m
16 - 5 = 11
m = 11
5 0
4 years ago
Other questions:
  • Ms. Barnsley separates her class into two groups. She gives each student the same 25-question math quiz Group A uses a
    10·2 answers
  • What is the probability that out of 400 babies born, 205 or fewer will be girls?
    11·2 answers
  • Does the equation y=2x+5 represent a linear equation
    7·1 answer
  • 24.3 ounces for $8.76 or 32.6 ounces for $16.95
    6·1 answer
  • What are the equivalent fractions for 1/5 and 3/12?
    10·2 answers
  • Find the value of the discriminant. Then describe the number and type of roots for the equation. -x^2-12x+4=0
    14·1 answer
  • Sonya found that x = - 4/3 is one solution of (6x + 4)2 = ?. The other solution is x = ? .
    8·2 answers
  • PLZ HELPPPP !!!
    14·1 answer
  • C
    6·2 answers
  • Can someone please help me!!!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!