The weight of the heavier player bakes it a lot harder to push him or do work because of the net force gravity<span />
Answer:
Correct option a. one state variable T.
Explanation:
In the case of an ideal gas it is shown that internal energy depends exclusively on temperature, since in an ideal gas any interaction between the molecules or atoms that constitute it is neglected, so that internal energy is only kinetic energy, which depends Only of the temperature. This fact is known as Joule's law.
The internal energy variation of an ideal gas (monoatomic or diatomic) between two states A and B is calculated by the expression:
ΔUAB = n × Cv × (TB - TA)
Where n is the number of moles and Cv the molar heat capacity at constant volume. Temperatures must be expressed in Kelvin.
An ideal gas will suffer the same variation in internal energy (ΔUAB) as long as its initial temperature is TA and its final temperature TB, according to Joule's Law, whatever the type of process performed.
200 MeV of energy
E1/E2=7.61=8
U is equal to 1 kilogram or 1000 g.
There are 6.02310 23 atoms in one mole, or 235 g, of uranium. Therefore, 6.02310 23 atoms are present in 1000 g of 92/235 U.
It is understood that one atom releases 200 MeV of energy during its fission.
As a result, the energy released from the fission of one kilogram of 92/235 is given by E 2 = 6.02310 23 1000200/235 =5.10610 26 MeV E1/E2=7.61=8
In light of this, the energy released during the fusion of one kilogram of hydrogen is roughly eight times greater than the energy generated during the fission of one kilogram of uranium.
To learn more about Fission please visit -
brainly.com/question/27923750
#SPJ1
Answer:
10m/s
Explanation:

Since there is no initial velocity as the object is dropped, you can write the following equation:

Now that you know how long the fall took, you can use another physics equation to find the velocity at that point.

Since there once again is no initial velocity, you can rewrite this as:

Hope this helps!