By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg
Look at your speedometer for say, a couple of seconds. Depends on whether or not you are moving on average at a constant speed (speedo won't change much) or whether you're in a polluting traffic jam/queue in which case the speedo will go up and down like a yo yo. to determine the speed, you'd probably need to plot the speed on the speedo against the times at which the speedo speeds were read from the speedo.
Answer:
25 m/s
Explanation:
First we should define the variables
T=4
Dx = 100
ay=-9.8
ax=0
We can use formula 1 from the BIG 5
x=(v+v0)t/2
By plugging in our variables we can get 100=4(v+v0)/2
Which is 50=v+v0
v=v0 since horizontal acceleration always equals zero
so 2v0 = 50
v0 = 25
The answer is A.
p=m/v
p= 240/60
p= 4 g/cm^3
Answer:
Many difficulties would arise if there was a lack of uniformity in the measurement of various weights and measures between business, industry, individuals and countries. The biggest implications for a lack of uniformity are in health and safety, equity and sustainability.
Explanation:
palike nlng po