The force of gravity between Earth and Mars will decrease.
The gravitational law is given as-
F = G mM/r²
here, m= mass of rocket
M = mass of earth
r = distance between earth and rocket
So, as rocket takes off from earth and fly towards mars then the distance starts to increase between earth and rocket, and the gravitational pull between them starts to weaken. Then a point will reach when rocket will far from gravity of earth and could probably enter the gravity of Mars.
Learn more about gravitational law here:
brainly.com/question/12101547
#SPJ4
The force of gravity on earth is 9.807 m/s^2 (or meters per second per second).
To determine the force applied, multiply the mass of the package (5.7 kg) by the force of gravity on Earth (9.807 m/s^2).
5.7 x 9.807 = 55.86 N The answer is D.
Note: the actual force is 55.89 Newtons.
Answer:
The velocity of the blades is 88.185 m/s.
Explanation:
Given;
length of the blade, r = 80 m
angular speed, ω = 1 rev per 5.7 seconds
The velocity of the blades is calculated by applying the following circular motion equation that relates linear velocity (V) and angular speed (ω);

Therefore, the velocity of the blades is 88.185 m/s.
Answer:
Magnitude = 3.64 ×
စ = 43.9°
Explanation:
given data
ship to travel = 1.7 ×
kilometers
turn = 70°
travel an additional = 2.7 ×
kilometers
solution
we will consider here
Px = 1.7 ×
Py = 0
Qx =2.7 ×
cos(70)
Qy= 2.7 ×
sin(70)
so that
Hx = Px + Qx ............1
Hx = 2.62 ×
and
Hy = Py + Qy ..........2
Hy = 2.53 ×
so Magnitude = 
Magnitude = 3.64 ×
so direction will be
tan စ = Hy ÷ Hx ......................3
tan စ =
tan စ = 0.9656
စ = 43.9°