<h2>
Answer:2.65 seconds</h2>
Explanation:
Let
be the acceleration.
Let
be the initial velocity.
Let
be the final velocity.
Let
be the time taken.
As we know from the equations of motion,

Given,


Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Answer:
The initial acceleration of the 59g particle is
Explanation:
Newton's second laws relates acceleration (a), net force(F) and mass (m) in the next way:
(1)
We already know the mass of the particle so we should find the electric force on it to use on (1), the magnitude of the electric force between two charged objects by Columb's law is:

with q1 and q2 the charge of the particles, r the distance between them and k the constant
. So:

Using that value on (1) and solving for a

In order to completely describe a velocity,
you need a speed and a direction.
Answer:
<h3>The answer is 5.4 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>5.4 kg</h3>
Hope this helps you