1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
8

An electron moves with a constant horizontal velocity of 3.0 × 106 m/s and no initial vertical velocity as it enters a deflector

inside a TV tube. The electron strikes the screen after traveling 11 cm horizontally and 34 cm vertically upward with no horizontal acceleration. What is the constant vertical acceleration provided by the deflector? (The effects of gravity can be ignored.)
Physics
1 answer:
Ghella [55]3 years ago
7 0

Answer:

a = 5.05 x 10¹⁴ m/s²

Explanation:

Consider the motion along the horizontal direction

v_{x} = velocity along the horizontal direction = 3.0 x 10⁶ m/s

t = time of travel

X = horizontal distance traveled = 11 cm = 0.11 m

Time of travel can be given as

t = \frac{X}{v_{x}}

inserting the values

t = 0.11/(3.0 x 10⁶)

t = 3.67 x 10⁻⁸ sec

Consider the motion along the vertical direction

Y = vertical distance traveled = 34 cm = 0.34 m

a = acceleration = ?

t = time of travel  = 3.67 x 10⁻⁸ sec

v_{y} = initial velocity along the vertical direction = 0 m/s

Using the kinematics equation

Y = v_{y} t + (0.5) a t²

0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²

a = 5.05 x 10¹⁴ m/s²

You might be interested in
ow long must a simple pendulum be if it is to make exactly ten swings per second? (That is, one complete vibration takes exactly
Igoryamba
The period T of a pendulum is given by:
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the length of the pendulum while g=9.81 m/s^2 is the gravitational acceleration.

In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is T=0.200 s. Using this data, we can solve the previous formula to find L:
L=g ( \frac{T}{2\pi} )^2=(9.81 m/s^2)( \frac{0.2 s}{2 \pi} )^2=1 \cdot 10^{-3} m=1 mm
4 0
3 years ago
How do leptons differ from hadrons?
Savatey [412]
I'll just give you the link for it but count it as my answer. http://www.differencebetween.com/difference-between-leptons-and-vs-hadrons/
4 0
4 years ago
A ship anchored at sea is rocked by waves that have crests 14 m apart the waves travel at 7.0 m/s how often do the wave crest re
xeze [42]

Answer:

I think its 2 seconds

Explanation:

14/7

3 0
3 years ago
A JFET has a drain current of 5mA. If IDSS = 10mA and VGS ( off )= -6 v. find The Value Of
levacccp [35]

\underline {\huge \boxed{ \sf \color{skyblue}Answer :  }}

<u>Given :</u>

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{D} = 5mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{DSS} = 10mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS(off)} = -6V

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS} =   {?}

\:  \:  \:

<u>Let's Slove :</u><u> </u>

  • \tt \large  I_{D} = I_{(DSS)}  (1 -   \frac {V_{GS}}{V_{GS(off)}} )^{2}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{I_D} }{ \sqrt{I_{DSS}} } ) \times  V_{GS(off)}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{5m} }{ \sqrt{10m} } ) \times  { - 6}

\:  \:

  • \underline \color{red} {\tt \large \boxed {\tt V_{GS} = 1.75 ✓}}
3 0
2 years ago
A block lies on a horizontal frictionless surface. A horizontal force of 100 N is applied to the block giving rise to an acceler
KIM [24]

Answer:

(a) m = 33.3 kg

(b) d = 150 m

(c) vf = 30 m/s

Explanation:

Newton's second law to the block:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

Data

F= 100 N

a= 3.0 m/s²

(a) Calculating of the  mass of the block:

We replace dta in the formula (1)

F = m*a

100 =  m*3

m = 100 / 3

m = 33.3 kg

Kinematic analysis

Because the block  moves with uniformly accelerated movement we apply the following formulas:

d= v₀t+ (1/2)*a*t² Formula (2)

vf= v₀+a*t   Formula (3)

Where:  

d:displacement in meters (m)  

t : time interval in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s²

Data

a= 3.0 m/s²

v₀= 0

t = 10 s

(b) Distance the block will travel if the force is applied for 10 s

We replace dta in the formula (2):

d= v₀t+ (1/2)*a*t²

d = 0+ (1/2)*(3)*(10)²

d =150 m

(c) Calculate the speed of the block after the force has been applied for 10 s

We replace dta in the formula (3):

vf= v₀+a*t

vf= 0+(3*(10)

vf= 30 m/s

4 0
3 years ago
Other questions:
  • Two students, Student 1 and Student 2, did a hands-on mining exercise with cookies to compare the total cost of mining in two di
    13·1 answer
  • The hammer of an electric bell strikes 1440 times in a minute and does a work of 0.2 J per strike. what is the power of hammer i
    7·2 answers
  • The Bohr radius a0 is the most probable distance between the proton and the electron in the Hydrogen atom, when the Hydrogen ato
    9·1 answer
  • Solar energy is: expensive renewable inefficient during winter all of the above
    14·2 answers
  • Do not have definite size and always take the shape of their container,
    5·2 answers
  • A wave has a period of 2 seconds and a wavelength of 4 meters. Calculate its frequency and speed.
    6·1 answer
  • A 35 kg boy is riding a 65 kg go-cart. He pushes on the gas pedal, causing the cart to accelerate at 5 m/s2. Use the equation F
    6·2 answers
  • Explain what is the difference of physical and chemical weathering
    10·1 answer
  • The gravitational force between the sun and every object in the solar system helps keep each object in its own unique orbit arou
    13·2 answers
  • Which diagram best represents the relationship between these terms?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!