Assuming there is no force of friction...
F = ma
F = (1300kg)(1.5m/s^2)
F = 1950N
Just multiply mass by acceleration.
1300 x 1.5 = 1950N.
Answer:
bend toward the normal line
Explanation:
When light passes from a less dense to a more dense substance, (for example passing from air into water), the light is refracted (or bent) towards the normal. In your question the light is moving from rarer to denser medium
The last one, the soil will become weak & unable to support plant growth
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
The mass is still 10 kg. But instead of weighing 98N as it does on Earth, it weighs 245N on Jupiter.