If the ball is green, then it is absorbing all the colors of light except green. This means that it is reflecting or denying the absorption of green light, that is why the ball is green. Therefore, your answer would be B.
Hope I helped :)
About 85% sure on this one.
For n resistors in series, the equivalent resistance is given by the sum of the resistances:

In this problem, we have three resistors, so the equivalent resistance of the load is the sum of the resistances of the three resistors:
Answer:
The cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Explanation:
From the question given above, the following data were obtained:
Height to which the target is located = 50 m
Initial velocity (u) = 20 m/s
To know whether or not the cannon ball is able to hit the target, we shall determine the maximum height to which the cannon ball attained. This can be obtained as follow:
Initial velocity (u) = 20 m/s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = 10 m/s²
Maximum height (h) =?
v² = u² – 2gh (since the ball is going against gravity)
0² = 20² – (2 × 10 × h)
0 = 400 – 20h
Collect like terms
0 – 400 = – 20h
– 400 = – 20h
Divide both side by – 20
h = – 400 / – 20
h = 20 m
Thus, the the maximum height to which the cannon ball attained is 20 m.
From the calculations made above, we can conclude that the cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Nothing is faster than light. Dark is the absence of light, or indeed anything at all. ... Darkness came before light, so light had to be created to get there. It's like turning on s flashlight in a dark room: the darkness is already there, and an outside source (you/the flashlight) needs to create light.