1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
3 years ago
10

Which statement best compares an asteroid with Earth?

Physics
1 answer:
IgorLugansk [536]3 years ago
6 0

Answer:C) Both have rocky composition

You might be interested in
The primary source of evidence proposed by many scientist to support the theory of an ancient earth is ____ dating.
vova2212 [387]
It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
7 0
3 years ago
Two cars A and B are 100m apart moving towards each other with
maxonik [38]

Let car A's starting position be the origin, so that its position at time <em>t</em> is

A: <em>x</em> = (40 m/s) <em>t</em>

and car B has position at time <em>t</em> of

B: <em>x</em> = 100 m - (60 m/s) <em>t</em>

<em />

They meet when their positions are equal:

(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>

(100 m/s) <em>t</em> = 100 m

<em>t</em> = (100 m) / (100 m/s) = 1 s

so the cars meet 1 second after they start moving.

They are 100 m apart when the difference in their positions is equal to 100 m:

(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m

(subtract car B's position from car A's position because we take car A's direction to be positive)

(100 m/s) <em>t</em> = 200 m

<em>t</em> = (200 m) / (100 m/s) = 2 s

so the cars are 100 m apart after 2 seconds.

3 0
3 years ago
The pressure exerted by a gas is 2.0 atm while it has a volume of 350 mL. What would be the volume of this sample of gas at stan
34kurt

Answer:

700 mL or 0.0007 m³

Explanation:

P₁ = Initial pressure = 2 atm

V₁ = Initial volume = 350 mL

P₂ = Final pressure = 1 atm

V₂ = Final volume

Here the temperature remains constant. So, Boyle's law can be applied here.

P₁V₁ = P₂V₂

\frac{P_1V_1}{P_2}=V_2\\\Rightarrow V_2=\frac{2\times 350}{1}\\\Rightarrow V_2=700\ mL

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³

7 0
3 years ago
4 This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive
zubka84 [21]

Answer:at 21.6 min they were separated by 12 km

Explanation:

We can consider the next diagram

B2------15km/h------->Dock

|

|

B1 at 20km/h

|

|

V

So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.

Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.

3 0
3 years ago
What is the difference between gravitational force and the force of gravity
statuscvo [17]

This might help and it might not:

Gravitation is the acting force between two bodies. On the other hand, gravity is the force occurring between an object and the very big object earth. Every object with some mass exerts the gravitational force on every other object having some mass. This force and its strength depend on the masses of the objects under consideration. Gravity helps to keep the planets to move in their orbit around the sun.

Gravitation is the force of attraction between any two bodies in the universe. In our universe, each object attracts each other with a certain amount of force. The large distance of separation is the main reason for its weak nature.

Gravity is the weakest type of fundamental force in nature. Still, it holds together the entire solar systems and galaxies.

Gravity has the existence with unlimited range.

3 0
2 years ago
Other questions:
  • describe the coordinate system that is usually chosen for analyzing circular motion and state at least one advantages for this c
    7·1 answer
  • An electric field exerts an electrostatic force of magnitude 1.5 x 10-14 newton on an electron within the field. what is the mag
    11·1 answer
  • What is a function of the pineal gland in the endocrine system
    15·1 answer
  • 20 kg who is running at a speed of 4.0 m/s jumps onto a stationary sled of mass 5.0 kg on a frozen lake. the speed at which the
    8·1 answer
  • When the moving sidewalk at the airport is broken, as it often seems to be, it takes you 44 s to walk from your gate to baggage
    13·1 answer
  • A scientist has two radioactive substances. One emits beta particles, and the other emits alpha particles. He thinks that since
    10·2 answers
  • This is the given equation of vibration of
    15·1 answer
  • Which of the following is a chemical change?
    14·2 answers
  • Scientists might live too far away to meet face to face. What are the three other ways they can share data and discuss evidence?
    9·2 answers
  • Define universal vibrations ?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!